Neuro-oncological ventral antigen 1 (NOVA1) is known as a neuron-specific pre-mRNA binding splicing factor. Previously, it was shown to be highly upregulated in T lymphocytes, as well as fibroblasts/stromal spindle cells, in tertiary lymphoid tissues formed by the benign immune-inflammatory process, while it was frequently downregulated in tumor cells and other cells within the tumor microenvironment. Here, we sought to identify the mechanisms of NOVA1 modulation in head and neck squamous cell carcinoma (HNSCC). NOVA1 was induced by inflammatory-immune signals within the tumor microenvironment and was suppressed by epigenetic dysregulation, such as that with miR-146. We found attenuated expression of NOVA1 to be associated with non-oropharynx sites such as oral cavity, hypopharynx, and larynx, human papilloma virus (HPV)-negative SCC defined by immunohistochemistry for p16 expression, fewer tumor infiltrating lymphocytes, and poor patient outcomes. Moreover, changes were discovered in epithelial mesenchymal transition-associated markers according to NOVA1 status. This study provides some insights to the underlying mechanism of NOVA1 regulation and suggests that NOVA1 may serve as a prognostic biomarker and potential therapeutic target for HNSCC in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677744 | PMC |
http://dx.doi.org/10.1038/s41598-019-47755-8 | DOI Listing |
Cell Mol Life Sci
December 2024
Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs.
View Article and Find Full Text PDFBMC Cancer
December 2024
Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
Background: The NTRK fusion gene is a rare cancer driver and a typical representative "diamond mutation". Its unique role in tumor progression is highly important for the clinical diagnosis and treatment of patients with tumors. We searched for NTRK fusion-positive patients in our hospital.
View Article and Find Full Text PDFComput Biol Med
December 2024
Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; yΘμ Study Group, ProspED Polytechnic, Carlton, VIC, 3053, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia. Electronic address:
Heliyon
September 2024
Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China.
Aim: To discover novel methylation-related differentially expressed genes (MRDEGs) for cervical cancer, with a focus on their potential for early diagnosis and prognostic assessment.
Materials & Methods: We integrated data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. TCGA-MRDEGs were identified by analyzing differentially methylated genes (DMGs) and their correlation with gene expression.
Sci Rep
August 2024
Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
Metabolic disorders such as insulin resistance and type 2 diabetes are associated with brain dysfunction and cognitive deficits, although the underpinning molecular mechanisms remain elusive. Epigenetic factors, such as non-coding RNAs, have been reported to mediate the molecular effects of nutrient-related signals. Here, we investigated the changes of miRNA expression profile in the hippocampus of a well-established experimental model of metabolic disease induced by high fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!