Recent advances in DNA/RNA sequencing have made it possible to identify new targets rapidly and to repurpose approved drugs for treating heterogeneous diseases by the 'precise' targeting of individualized disease modules. In this study, we develop a Genome-wide Positioning Systems network (GPSnet) algorithm for drug repurposing by specifically targeting disease modules derived from individual patient's DNA and RNA sequencing profiles mapped to the human protein-protein interactome network. We investigate whole-exome sequencing and transcriptome profiles from ~5,000 patients across 15 cancer types from The Cancer Genome Atlas. We show that GPSnet-predicted disease modules can predict drug responses and prioritize new indications for 140 approved drugs. Importantly, we experimentally validate that an approved cardiac arrhythmia and heart failure drug, ouabain, shows potential antitumor activities in lung adenocarcinoma by uniquely targeting a HIF1α/LEO1-mediated cell metabolism pathway. In summary, GPSnet offers a network-based, in silico drug repurposing framework for more efficacious therapeutic selections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677722PMC
http://dx.doi.org/10.1038/s41467-019-10744-6DOI Listing

Publication Analysis

Top Keywords

drug repurposing
12
disease modules
12
genome-wide positioning
8
positioning systems
8
systems network
8
silico drug
8
approved drugs
8
drug
5
network algorithm
4
algorithm silico
4

Similar Publications

Phenylbutyric Acid Modulates Apoptosis and ER Stress-Related Gene Expression in Glycogen Storage Disease Type Ib In Vitro Model.

Mol Genet Genomic Med

January 2025

Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Republic of Serbia.

Introduction: Chronic endoplasmic reticulum (ER) stress and increased apoptosis are involved in the pathogenesis of glycogen storage disease Ib (GSD Ib), whereas small molecule phenylbutyrate (4-PBA) showed the capability of reducing ER stress-induced apoptosis. The objective was to generate an in vitro system in which capability of small molecules (SMs) to influence ER stress and apoptosis could be screened at the expression level.

Methods: G6PT-deficient FlpInHEK293 cell line was created and validated using the CRISPR/Cas9 knockout method.

View Article and Find Full Text PDF

A Novel and Robust Method for Investigating Fungal Biofilm.

Bio Protoc

January 2025

Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.

, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Due to their considerable chemical diversity, metal compounds are attracting increasing and renewed attention from the scientific and medical communities as potential antimicrobial agents to combat the growing problem of antibiotic resistance. The development of metal compounds as antimicrobial agents typically follows classical drug discovery procedures and suffers from the same problems; indeed, these procedures can be very expensive and time-consuming, and carry an intrinsically high risk of failure. Here, we show how some established drug discovery approaches can be conveniently and successfully applied to antimicrobial metal compounds to provide some shortcuts for faster clinical translation of new treatments.

View Article and Find Full Text PDF

Drug repurposing has potential to improve outcomes for high-grade serous ovarian cancer (HGSOC). Repurposing drugs with PARP family binding activity may produce cytotoxic effects through the multiple mechanisms of PARP including DNA repair, cell-cycle regulation, and apoptosis. The aim of this study was to determine existing drugs that have PARP family binding activity and can be repurposed for treatment of HGSOC.

View Article and Find Full Text PDF

Repurposing bosentan as an anticancer agent: EGFR/ERK/c-Jun modulation inhibits NSCLC tumor growth.

Fundam Clin Pharmacol

February 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.

Drug repurposing of well-established drugs to be targeted against lung cancer has been a promising strategy. Bosentan is an endothelin 1 (ET-1) blocker widely used in pulmonary hypertension. The current experiment intends to inspect the anticancer and antiangiogenic mechanism of bosentan targeting epidermal growth factor receptor (EGFR) /extra-cellular Signal Regulated Kinase (ERK) /c-Jun/vascular endothelial growth factor (VEGF) carcinogenic pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!