The surface topology of the scale pattern from the European sea bass () was measured using a digital microscope and geometrically reconstructed using computer assisted design modelling. Numerical flow simulations and experiments with a physical model of the surface pattern in a flow channel mimic the flow over the fish surface with a laminar boundary layer. The scale array produces regular rows of alternating, streamwise low-speed and high-speed streaks inside the boundary layer close to the surface, with maximum velocity difference of approximately 9%. Low velocity streaks are formed in the central region of the scales whereas the high velocity streaks originated in the overlapping region between the scales. Thus, those flow patterns are linked to the arrangement and the size of the overlapping scales within the array. Because of the velocity streaks, total drag reduction is observed when the scale height is small relative to the boundary layer thickness, i.e. less than 10%. Flow simulations were compared with surface oil-flow visualisations on the physical model of the biomimetic surface placed in a flow channel. The results show an excellent agreement in the size and arrangement of the streaky structures. The existence of streaks is also shown on sea bass and common carp () by surface flow visualisation. From comparisons with recent literature on micro-roughness effects on laminar boundary layer flows, it is hypothesised that the fish scales could delay transition, which would further reduce the drag.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.205963 | DOI Listing |
Turk J Chem
December 2024
Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria.
In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. Electronic address:
Formaldehyde (HCHO), a major carbonyl compound in urban air, poses health risks due to its carcinogenic properties. However, the role of FT-PBL exchange in HCHO and the importance of vertical exchange on diurnal variations in HCHO remain unclear. This study investigated the diurnal variability of HCHO in Seoul's planetary boundary layer (PBL) during cold.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany.
Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive instrumentation. Similarly, MEMS-based sensors, like Kulite sensors, present challenges in terms of intrusiveness, cost, and integration complexity.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier-Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, in which the boundary layer mesh is sized in the streamwise and spanwise directions comparable to WMLES, and the wall-normal mesh is comparable to a RANS simulation without wall functions. A mixing length model is used to prescribe an eddy viscosity in the near-wall region, with the mixing length scale limited based on local mesh size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!