Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in B4D1.

Appl Environ Microbiol

Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

Published: October 2019

is a promising source for the production of docosahexaenoic acid and astaxanthin. The effects of different methanol concentrations on astaxanthin, biomass, and production of the lipids, squalene, and total sterol in B4D1 were investigated. Astaxanthin began to accumulate when the methanol concentration reached 3.2% and peaked at 5.6% methanol, with a 2,000-fold increase over that in the control. However, under cultivation with 5.6% methanol, the biomass, lipids, squalene, and total sterol decreased to various degrees. Transcriptomic analysis was performed to explore the effects of different methanol concentrations (0%, 3.2%, and 5.6%) on the expression profile of B4D1. Three key signaling pathways were found to play important roles in regulating cell growth and metabolism under cultivation with methanol. Five central carbon metabolism-associated genes were significantly downregulated in response to 5.6% methanol and thus were expected to result in less ATP and NADPH being available for cell growth and synthesis. High methanol conditions significantly downregulated three genes involved in fatty acid and squalene/sterol precursor biosynthesis but significantly upregulated geranylgeranyl diphosphate synthase, lycopene β-cyclase, and β-carotene 3-hydroxylase, which are involved in astaxanthin synthesis, thus resulting in an increase in the levels of precursors and the final production of astaxanthin. Additionally, the transcriptional levels of three stress response genes were upregulated. This study investigates gene expression profiles in the astaxanthin producer when grown under various methanol concentrations. These results broaden current knowledge regarding genetic expression and provide important information for promoting astaxanthin biosynthesis in strains are usually studied as oil-producing strains, but they can also synthesize other secondary metabolites, such as astaxanthin. In this study, methanol was used as an inducer, and we explored its effects on the production of astaxanthin, a highly valuable substance in Methanol induced to synthesize large amounts of astaxanthin. Transcriptomic analysis was used to investigate the regulation of signaling and metabolic pathways (mainly relative gene expression) in grown in the presence of various concentrations of methanol. These results contribute to the understanding of the underlying molecular mechanisms and may aid in the future optimization of for astaxanthin biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752013PMC
http://dx.doi.org/10.1128/AEM.01243-19DOI Listing

Publication Analysis

Top Keywords

effects methanol
12
methanol
12
methanol concentrations
12
56% methanol
12
astaxanthin
11
fatty acid
8
lipids squalene
8
squalene total
8
total sterol
8
transcriptomic analysis
8

Similar Publications

The methoxy radical, CHO, has long been studied experimentally and theoretically by spectroscopists because it displays a weak Jahn-Teller effect in its electronic ground state, combined with a strong spin-orbit interaction. In this work, we report an extension of the measurement of the pure rotational spectrum of the radical in its vibrational ground state in the submillimeter-wave region (350-860 GHz). CHO was produced by H-abstraction from methanol using F atoms, and its spectrum was probed in absorption using an association of source-frequency modulation and Zeeman modulation spectroscopy.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Serially coupled columns enhance rapid separation and predictive interaction understanding of 93 fentanyl analogs.

Anal Chim Acta

January 2025

College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea. Electronic address:

Background: The simplicity of synthesis methods has facilitated the illegal manufacture of various fentanyl analogs, leading to numerous fatal overdoses worldwide, particularly in North America. Fentanyl analogs with similar structures are difficult to distinguish due to their fragmentation patterns, making separation using chromatography essential. Additionally, because fentanyl analogs are lethal even in trace amounts, they are easily smuggled, and commonly used fentanyl test strips often fail to detect them due to their low sensitivity.

View Article and Find Full Text PDF

Objective:  Oral squamous cell carcinoma (OSCC) is the prevailing type of oral cancer, representing poor prognosis and elevated mortality rates. Major risk factors for OSCC include the use of tobacco products, alcohol consumption, betel quid chewing, and genetic mutation. is traditionally consumed by cancer patients to fight against tumor growth.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Argemone mexicana L. (Papaveraceae), a weed that thrives in the tropical and subtropical areas of South and Central America, Mexico, Caribbean Islands and India. In India, it has been used traditionally to treat vesicular calculus, inflammatory conditions, and hepatobiliary disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!