AI Article Synopsis

  • PARP inhibitors are the first drugs approved to use synthetic lethality in cancer treatment, significantly improving outcomes for advanced ovarian cancer patients by targeting DNA repair issues.
  • They have led to insights into how other genetic mutations beyond BRCA1/2 can affect treatment responses, making PARP inhibitors relevant for a broader range of cancers.
  • The exploration of combining PARP inhibitors with various treatments, including immunotherapies and chemotherapies, shows promise in enhancing their effectiveness and tolerance in both genetically mutated and wild-type cancers.

Article Abstract

Poly (ADP-ribose) polymerase (PARP) inhibitors are the first clinically approved drugs designed to exploit synthetic lethality, and were first introduced as a cancer-targeting strategy in 2005. They have led to a major change in the treatment of advanced ovarian cancer, and altered the natural history of a disease with extreme genetic complexity and defective DNA repair via homologous recombination (HR) pathway. Furthermore, additional mechanisms apart from breast related cancer antigens 1 and 2 () mutations can also result in HR pathway alterations and consequently lead to a clinical benefit from PARP inhibitors. Novel combinations of PARP inhibitors with other anticancer therapies are challenging, and better understanding of PARP biology, DNA repair mechanisms, and PARP inhibitor mechanisms of action is crucial. It seems that PARP inhibitor and biologic agent combinations appear well tolerated and clinically effective in both -mutated and wild-type cancers. They target differing aberrant and exploitable pathways in ovarian cancer, and may induce greater DNA damage and HR deficiency. The input of immunotherapy in ovarian cancer is based on the observation that immunosuppressive microenvironments can affect tumour growth, metastasis, and even treatment resistance. Several biologic agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (VEGF; bevacizumab, cediranib), and PD-1 or PD-L1 (durvalumab, pembrolizumab, nivolumab), anti-CTLA4 monoclonal antibodies (tremelimumab), mTOR-(vistusertib), AKT-(capivasertib), and PI3K inhibitors (buparlisib, alpelisib), as well as MEK 1/2, and WEE1 inhibitors (selumetinib and adavosertib, respectively). Olaparib and veliparib have also been combined with chemotherapy with the rationale of disrupting base excision repair via PARP inhibition. Olaparib has been investigated with carboplatin and paclitaxel, whereas veliparib has been tested additionally in combination with temozolomide vs. pegylated liposomal doxorubicin, as well as with oral cyclophosphamide, and topoisomerase inhibitors. However, overlapping myelosuppression observed with PARP inhibitor and chemotherapy combinations requires further investigation with dose escalation studies. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of such combination strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787707PMC
http://dx.doi.org/10.3390/diagnostics9030087DOI Listing

Publication Analysis

Top Keywords

parp inhibitors
20
ovarian cancer
16
parp inhibitor
12
parp
10
inhibitors
9
poly adp-ribose
8
adp-ribose polymerase
8
polymerase parp
8
dna repair
8
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!