Proprioceptive deficits are common among stroke survivors and are associated with slower motor recovery, poorer upper limb motor function, and decreased self-care ability. Somatosensory feedback augmenting proprioception should enhance motor control after stroke, but available evidence is inconclusive. This study evaluated the effects of a robot-aided, somatosensory-focused training on proprioceptive acuity and motor performance in individuals with sub-acute and chronic stroke. Twelve stroke survivors completed two training sessions on two consecutive days. During training, participants used a haptic robotic wrist exoskeleton and made continuous, goal-directed wrist ab/adduction movements to a visual target while receiving vibro-tactile feedback. Proprioceptive acuity and active movement errors were assessed before, immediately after, and two days after intervention. Results showed significantly improved proprioceptive acuity at posttest and retention. Motor accuracy measures showed improvements, however these were not statistically significant. This study demonstrates the feasibility of robot-aided somatosensory rehabilitation training in stroke survivors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/ICORR.2019.8779409DOI Listing

Publication Analysis

Top Keywords

stroke survivors
16
proprioceptive acuity
12
motor function
8
motor
6
stroke
6
training
5
robot-assisted sensorimotor
4
sensorimotor training
4
training program
4
program improve
4

Similar Publications

Background: Intracerebral haemorrhage (ICH) accounts for approximately 28% of all strokes worldwide. ICH has a high case fatality, and only few survivors recover to independent living. Over the past decades, demographic changes, and changes in prevalence and management of risk factors may have influenced incidence.

View Article and Find Full Text PDF

Background: Brain-computer interface (BCI) technology can enhance neural plasticity and motor recovery in persons with stroke. However, the effects of BCI training with motor imagery (MI)-contingent feedback versus MI-independent feedback remain unclear. This study aimed to investigate whether the contingent connection between MI-induced brain activity and feedback influences functional and neural plasticity outcomes.

View Article and Find Full Text PDF

Predicting the likelihood of readmission in patients with ischemic stroke: An explainable machine learning approach using common data model data.

Int J Med Inform

December 2024

Department of Health Policy and Management, School of Medicine, Kangwon National University, 510 School of Medicine Building #1 (N414), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Preventive Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do 24289, Republic of Korea; Team of Public Medical Policy Development, Gangwon State Research Institute for People's Health, 880 Baksa-ro, Seo-myeon, Chuncheon-si, Gangwon-do 24461, Republic of Korea. Electronic address:

Background: Ischemic stroke affects 15 million people worldwide, causing five million deaths annually. Despite declining mortality rates, stroke incidence and readmission risks remain high, highlighting the need for preventing readmission to improve the quality of life of survivors. This study developed a machine-learning model to predict 90-day stroke readmission using electronic medical records converted to the common data model (CDM) from the Regional Accountable Care Hospital in Gangwon state in South Korea.

View Article and Find Full Text PDF

Background: Sleep disturbance is a common concern among stroke survivors, yet the association of sleep duration and sleep disorders with post-stroke depression and all-cause and cardiovascular disease (CVD) mortality remains elusive. We aimed to explore these associations using data from the National Health and Nutrition Examination Survey (NHANES).

Methods: Adult stroke survivors from NHANES 2005-2018 were included.

View Article and Find Full Text PDF

A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance.

J Appl Biomech

January 2025

Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.

This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!