Robotic exoskeletons have the capability to improve community ambulation in aging individuals. These exoskeleton controllers utilize different environmental information such as walking speeds and slope inclines to provide corresponding assistance. Several numerical approaches for estimating this environmental information have been implemented; however, they tend to be limited during dynamic changes. A possible solution is a machine learning model utilizing the user's electromyography (EMG) signals along with mechanical sensor data. We developed a neural network-based walking speed and slope estimator for a powered hip exoskeleton and explored the EMG signal contributions in both static and dynamic settings while wearing the device. We also analyzed the performance of different EMG electrode placements. The resulting machine learning model achieved error rates below 0.08 m/s RMSE and 1.3 RMSE. Our study findings from four able-bodied and two elderly subjects indicate that EMG can improve the performance by reducing the error rate by 14.8% compared to the model using only mechanical sensors. Additionally, results show that using EMG electrode configuration within the exoskeleton interface region is sufficient for the EMG model performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2019.8779433 | DOI Listing |
BMC Neurol
January 2025
Department of Neurology, Wessex Neurological Centre, University Hospital Southampton, Southampton, UK.
Sarcoid-like reaction is an immunological reaction that can affect lymph nodes and organs but does not meet the diagnostic criteria for systemic sarcoidosis. Anti-CD20 auto-antibodies have been reported to be responsible for such reactions. There are several reported associations between Chronic lymphocytic leukaemia (CLL), Amyotrophic lateral sclerosis (ALS) and Sarcoid-like reactions (SLR).
View Article and Find Full Text PDFBMJ Support Palliat Care
January 2025
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, Tianjin, China
Importance: Limb spasticity is a common issue among stroke patients. Transcutaneous electrical acupoint stimulation (TEAS) is recommended as an alternative therapy for managing upper limb spasticity after stroke; however, its potential effects and feasibility remain uncertain.
Objective: To investigate the potential effects and feasibility of TEAS on motor function in patients with upper limb spasticity after stroke.
Med Biol Eng Comput
January 2025
Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.
This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.
View Article and Find Full Text PDFJ Dance Med Sci
January 2025
Frontier Research Institute of Convergence Sports Science, College of Educational Sciences, Yonsei University, Seoul, Korea.
Ballet-based dance training emphasizes the equal development of both legs. However, dancers often perceive differences between their legs during balance or landing. There still needs to be more consensus on the functional difference between dominant (D) and non-dominant legs (ND).
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Neurology, National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland.
Age-related changes to the orbicularis oculi muscle include impaired eyelid function, such as lagophthalmos, alterations in tear film dynamics, and aesthetic changes like wrinkles, festoons, and the descent of soft tissue. To date, the structural and functional changes that would comprehensively increase our understanding of orbicularis aging have not been analyzed. This study aims to investigate functional outcomes using surface electromyography and correlate them with ultrastructural changes in orbicularis during aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!