Romero-Arenas, S, Calderón-Nadal, G, Alix-Fages, C, Jerez-Martínez, A, Colomer-Poveda, D, and Márquez, G. Transcranial direct current stimulation does not improve countermovement jump performance in young healthy men. J Strength Cond Res 35(10): 2918-2921, 2021-The main purpose of this study was to report the effects of transcranial direct current stimulation (tDCS) on countermovement jump (CMJ) performance in young healthy men. Seventeen healthy male subjects volunteered for the study (age: 22.4 ± 2.6 years; body mass: 71.8 ± 8.7 kg; height: 174.6 ± 5.9 cm; and CMJ height: 36.8 ± 6.3 cm). After a familiarization session, subjects underwent 3 experimental conditions, 7 days apart, in a randomized, double-blinded crossover design: anodal, cathodal, and sham tDCS. The stimulation was applied over the dorsolateral prefrontal cortex for 15 minutes. During experimental sessions, subjects completed a warm-up and 3 CMJ trials separated by 1 minute before and after each of the 3 experimental conditions. Countermovement jump height and muscular peak power were extracted from the best CMJ in each moment. A 2-way repeated-measures analysis of variance with time and condition as factors were performed for CMJ height and muscular peak power. Effect size analysis was conducted using Cohen's d coefficient. The analysis did not show either significant main effects or interactions for both time and condition factors in the CMJ performance (p > 0.05). Furthermore, effect size was trivial for all conditions (d: 0.01-0.14) in CMJ height and muscular peak power. These findings suggest that tDCS may not be a valuable tool to improve vertical jump performance.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0000000000003242DOI Listing

Publication Analysis

Top Keywords

countermovement jump
16
transcranial direct
12
direct current
12
current stimulation
12
jump performance
12
performance young
12
young healthy
12
healthy men
12
cmj height
12
height muscular
12

Similar Publications

This study examined the effects of different fatigue types on action anticipation and physical performance in high-level volleyball players. Twenty-four participants underwent four counterbalanced conditions: 60-min cycling at 60% peak power output, 60-min Stroop task, 60-min cycling at 60% peak power output with Stroop task and 60-min neutral documentary to induce physical fatigue (PF), mental fatigue (MF), dual fatigue (DF) and control group (CG), respectively. Action anticipation (anticipation test and visual search test) and physical performance (countermovement jump, T-test, and spike test) were conducted at baseline, immediately after (Post1), and after 10-min rest (Post2).

View Article and Find Full Text PDF

Objective: Muscle power is essential for the activities of daily living. Muscle power production depends on numerous factors such as muscle size and length, muscle architecture and fiber type and varies with age during growth. The association between muscle power output during a jump and lower limb muscle volume and length in adolescents is largely unknown.

View Article and Find Full Text PDF

Background: : Neuromuscular re-education has focused on improving motor activities in patients with pathologies by retraining the nervous system. However, this has not yet been investigated in healthy individuals. Voluntary isometric contractions at maximal muscle shortening (VICAMS) is a new technique with the same objective.

View Article and Find Full Text PDF

Purpose: To examine sex-based differences in substrate oxidation, postprandial metabolism, and performance in response to 24-hour manipulations in energy availability (EA), induced by manipulations to energy intake (EI) or exercise energy expenditure (EEE).

Methods: In a Latin Square design, 20 endurance athletes (10 females using monophasic oral contraceptives and 10 males) undertook five trials, each comprising three consecutive days. Day one was a standardized period of high EA; EA was then manipulated on day two; post-intervention testing occurred on day three.

View Article and Find Full Text PDF

Algorithmic Audits in Sports Medicine: An Examination of the SpartaScienceTM Force Plate System.

Med Sci Sports Exerc

November 2024

Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA.

Introduction: Force plate systems are increasingly utilized in the armed forces that claim to identify individuals at risk of musculoskeletal injury. However, factors influencing injury risk scores from a force plate system (SpartaScienceTM), and the effects of experimental perturbations on these scores, remain unclear.

Methods: Healthy males (n = 823; 22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!