Eu and Tb ions were site-selectively doped into LaLuO with the orthorhombic perovskite-type structure (ABO), and their luminescence properties were examined considering the doping sites (A or B sites). The X-ray diffraction analysis revealed the expansion or contraction of the unit cell volumes of the materials depending on the doping sites. The spectra of X-ray absorption near edge structure for the Eu and Tb L edge exhibited different shapes for the ions at A and B sites, confirming the site-selective doping of Eu and Tb in LaLuO. The photoluminescence (PL) and PL excitation (PLE) spectra of the materials also showed some differences caused by the doping sites. The intensities of the Eu PL peaks derived from the D-F transitions and those from the D-F transitions were markedly different between Eu at A sites and those at B sites because of the different site symmetries. The splitting of the intense Tb PL peaks originating from the D-F transitions and the absence of PL peaks from D-F transitions were found only for Tb at B sites because of the strong crystal field at B sites. In addition to the PL spectra, the positions of PLE peaks originating from charge transfer transitions in Eu and the 4f-5d transitions in Tb depended on the doping sites. The successful site-selective doping enabled us to clarify the site-sensitive luminescence properties of Eu and Tb doped in the perovskite-type LaLuO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b01273 | DOI Listing |
NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Institute of Theoretical and Applied Research, Duy Tan University Ha Noi 100000 Vietnam
In this work, we investigate the electronic and magnetic properties of the InSe monolayer enriched by doping with IVA-group (Si and Ge) and VA-group (P and As) atoms. Both In and Se sublattices are considered as doping sites to realize n- and p-type doping (X@InSe and X@InSe systems, X = Si, Ge, P, and As), respectively. The pristine InSe monolayer is an indirect gap semiconductor with a band gap of 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:
Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; Shenyang Key Laboratory of Chemical Pollution Control, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:
Here, a quenching strategy was developed to create oxygen vacancies in Cu doped α-MnO. The evolutions of oxygen vacancies were directly followed by means of XRD refinement, EPR and XPS. In combination with DFT calculations and detailed characterizations, evidence is captured that oxygen vacancies not only act as direct sites for the adsorption and activation of gaseous oxygen and toluene, but also accelerate the consumption and replenishment cycle of lattice oxygen species by weakening the strength of metal-oxygen bonds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!