Rapid identification of human-infecting viruses.

Transbound Emerg Dis

College of Biology, Hunan University, Changsha, China.

Published: November 2019

Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate human-infecting viruses from other viruses based on the frequency of k-mers in the viral genomic sequences. The k-nearest neighbor (KNN) model can predict the human-infecting viruses with an accuracy of over 90%. The performance of this KNN model built on the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used a reported human blood virome to further validate this KNN model with an accuracy of over 80% based on very short raw reads (150 bp). Our work demonstrates a conceptual and generic protocol for the discovery of novel human-infecting viruses in viral metagenomics studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168554PMC
http://dx.doi.org/10.1111/tbed.13314DOI Listing

Publication Analysis

Top Keywords

human-infecting viruses
16
knn model
12
viruses
8
viruses viruses
8
potential human
8
human infection
8
novel viruses
8
viral metagenomics
8
rapid identification
4
human-infecting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!