This paper presents a microfluidic chemical reaction using an electrowetting-on-dielectric (EWOD) digital microfluidic device. Despite a number of chemical/biological applications using EWOD digital microfluidic devices, their applications to organic reactions have been seriously limited because most of the common solvents used in synthetic organic chemistry are not compatible with EWOD devices. To address this unsolved issue, we first introduce a novel technique using an "engine-and-cargo" system that enables the use of non-movable fluids (e.g., organic solvents) on an EWOD device. With esterification as the model reaction, on-chip chemical reactions were successfully demonstrated. Conversion data obtained from on-chip reactions were used to characterize and optimize the reaction with regard to reaction kinetics, solvent screening, and catalyst loading. As the first step toward on-chip combinatorial synthesis, parallel esterification of three different alcohols was demonstrated. Results from this study clearly show that an EWOD digital microfluidic platform is a promising candidate for microscale chemical reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00428aDOI Listing

Publication Analysis

Top Keywords

digital microfluidic
16
ewod digital
12
microfluidic device
8
chemical reactions
8
microfluidic
5
ewod
5
on-chip
4
on-chip organic
4
organic synthesis
4
synthesis enabled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!