Background: Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm that arises from the acquisition of constitutively active BCR-ABL tyrosine kinase in hematopoietic stem cells. The persistence of bone marrow leukemia stem cells (LSCs) is the main cause of TKI resistance and CML relapse. Therefore, finding a key target or pathway to selectively target LSCs is of great significance for the thorough treatment of CML.
Methods: In this study, we aimed to identify key microRNAs, microRNA targets and pathways for the treatment of CML LSCs by integrating analyses of three microarray data profiles. We identified 51 differentially expressed microRNAs through integrated analysis of GSE90773 and performed functional gene predictions for microRNAs. Then, GSE11889 and GSE11675 were integrated to obtain differentially expressed genes (DEGs), and the overlapping DEGs were used as models to identify predictive functional genes. Finally, we identified 116 predictive functional genes. Clustering and significant enrichment analysis of 116 genes was based on function and signaling pathways. Subsequently, a protein interaction network was constructed, and module analysis and topology analysis were performed on the network.
Results: A total of 11 key candidate targets and 33 corresponding microRNAs were identified. The key pathways were mainly concentrated on the PI3K/AKT, Ras, JAK/STAT, FoxO and Notch signaling pathways. We also found that LSCs negatively regulated endogenous and exogenous apoptotic pathways to escape from apoptosis.
Conclusion: We identified key candidate targets and pathways for CML LSCs through bioinformatics methods, which improves our understanding of the molecular mechanisms of CML LSCs. These candidate genes and pathways may be therapeutic targets for CML LSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732304 | PMC |
http://dx.doi.org/10.1002/mgg3.851 | DOI Listing |
J Clin Med
January 2025
Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy.
: Treatment with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) has revolutionized disease management and has transformed CML from a life-threatening disease to a chronic condition for many patients. However, overcoming resistance, particularly related to leukemic stem cells (LSC) that can persist even when the bulk of the leukemic cells are eliminated, remains a significant challenge. : K562 and KU812 cell lines were treated in vitro with the TKI Imatinib (IM).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
The application of tyrosine kinase inhibitors (TKIs) has revolutionized the management of chronic myeloid leukemia (CML). However, disease relapse and progression particularly due to persistent leukemia stem cells (LSCs) remain a big challenge in the clinic. Therefore, validation of the therapeutic vulnerability in LSCs is urgently needed.
View Article and Find Full Text PDFOncogene
February 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model.
View Article and Find Full Text PDFElife
November 2024
Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.
The advent of tyrosine kinase inhibitors (TKIs) as treatment of chronic myeloid leukemia (CML) is a paradigm in molecularly targeted cancer therapy. Nonetheless, TKI-insensitive leukemia stem cells (LSCs) persist in most patients even after years of treatment and are imperative for disease progression as well as recurrence during treatment-free remission (TFR). Here, we have generated high-resolution single-cell multiomics maps from CML patients at diagnosis, retrospectively stratified by BCR::ABL1 (%) following 12 months of TKI therapy.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
Patients with chronic myeloid leukemia (CML) respond to tyrosine kinase inhibitors (TKIs); however, CML leukemic stem cells (LSCs) exhibit BCR::ABL kinase-independent growth and are insensitive to TKIs, leading to disease relapse. To prevent this, new therapies targeting CML-LSCs are needed. Rates of mitochondria-mediated oxidative phosphorylation (OXPHOS) in CD34CML cells within the primitive CML cell population are higher than those in normal undifferentiated hematopoietic cells; therefore, the inhibition of OXPHOS in CML-LSCs may be a potential cure for CML.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!