Aging effects play a crucial role in determining applications of green-synthesised iron-based nanoparticles in wastewater treatment from laboratory scale to practical applications. In this study, iron-based nanoparticles (Ec-Fe-NPs) were synthesised using the extract of Eichhornia crassipes and ferric chloride. Scanning electron microscopy (SEM) revealed that the fresh Ec-Fe-NPs were spherical and had a narrow particle size range (50 to 80 nm). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) demonstrated that the Ec-Fe-NPs were mainly amorphous in nature and consisted of Fe, FeO, FeO and FeO. As they aged, the particle size of the liquid Ec-Fe-NPs gradually increased and then tended to stabilise. Ec-Fe-NPs that were aged for 28 days were only 19% less efficient than fresh material at removing Cr(VI). Extracts aged up to 28 days were also tested, and their antioxidant capacity was found to be 15.4% lower than that of the fresh extracts. Furthermore, the removal efficiency of Cr(VI) using iron-based nanoparticles synthesised with the aged extracts was 67.2%. Finally, the active components of the extracts, which were responsible for the reactivity and stability of the iron-based nanoparticles, were identified by liquid chromatography-mass spectrometry. Overall, green-synthesised iron-based nanoparticles show promise for Cr(VI) removal from wastewater in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06006-z | DOI Listing |
Int J Biol Macromol
January 2025
Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
As a type of century-old catalyst, the use of iron-based materials runs through the Haber-Bosch process and electrochemical synthesis of ammonia because of its excellent capability, low cost, and abundant reserves. How to continuously improve its catalytic activity and stability for electrochemical nitrogen fixation has always been a goal pursued by scientific researchers. Herein, we develop a free-standing iron-based catalyst, i.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFAnal Chem
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!