Arsenic exposure in adults has been associated with increased serum matrix metalloproteinase-9 (MMP-9), a biomarker which is associated with chronic respiratory disease, lung inflammation, cardiovascular disease and cancer. The objective of this study was to evaluate the association between serum MMP-9 levels in children, urinary arsenic, arsenic chronic daily intake (CDI) and arsenic exposure from playground dust. This cross-sectional study examined 127 children from five elementary schools, in Hermosillo, Sonora, Mexico. Arsenic was analyzed in the dust using a portable X-ray fluorescence (XRF) analyzer. Total urinary arsenic was determined by inductively coupled plasma/optical emission spectrometry. Serum was analyzed for MMP-9 using ELISA. Arsenic levels in playground dust averaged 16.9 ± 4.6 mg/kg. Urinary arsenic averaged 34.9 ± 17.1 µg/L. Arsenic concentration in playground dust was positively associated with serum MMP-9 levels in crude analyses and after adjustment (P < 0.01), MMP-9 and CDI were positively associated only after adjustment (P < 0.01), and no association was found between MMP-9 and urinary arsenic. In conclusion, our study showed an association in children between serum MMP-9 levels and playground dust arsenic concentrations. Therefore, exposure to arsenic in dust where children spend significant time may manifest toxic effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845485 | PMC |
http://dx.doi.org/10.1007/s10653-019-00384-6 | DOI Listing |
Toxics
November 2024
Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain.
The aim of this study was to evaluate the possible contamination of urban dust in the schoolyards of 27 schools in an urban area of the city of Murcia (SE Spain). The color and degree of magnetism, as well as the heavy metal content (Cd, Cu, Cr, Ni, Pb, and Zn), were determined to establish the absence or the degree of contamination, if present, using environmental and health indices. It was established that the concentrations of heavy metals in the dust samples followed the order Zn (454 mg kg) > Cu (77 mg kg) > Cr (68 mg kg) > Pb (56 mg kg) > Ni (19 mg kg) > Cd (0.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China.
To identify the key factors for managing and controlling potential toxic elements (PTEs) in surface dust of urban community playgrounds, this study comprehensively analyzed the content, pollution characteristics, eco-health risks, and sources of commonly concerned PTEs in surface dust of Xi'an community playgrounds. The average levels of Cd, Hg, Cu, Cr, Ba, Zn and Pb in the dust were 2.2, 0.
View Article and Find Full Text PDFEnviron Geochem Health
September 2024
Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India.
Environ Geochem Health
August 2024
Faculty of Engineering and Natural Sciences, Department of Environmental Engineering, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No:177, 16310, Yıldırım/Bursa, Turkey.
Heavy metals pose significant threats to human health, particularly children. This study aimed to assess heavy metal pollution in children's playgrounds using surface dust as an indicator and to ascertain the associated exposure levels and health risks. A total of one hundred twenty dust samples were collected from the surface of playground toys in areas surrounding the cement factory in Bursa, Türkiye, on precipitation-free days.
View Article and Find Full Text PDFJ Environ Radioact
December 2023
Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary; Institute of Earth Physics and Space Science, HUN-REN, Csatkai E. u. 6-8, 9400, Sopron, Hungary. Electronic address:
Primordial radionuclides can be found in all environmental compartments. Since coal-fired power plants (CFPP) can be a source of additional radionuclide contamination because coal contains natural radioactive isotopes such as U (Ra) and Th. This study investigated the impact of such possible radionuclide contamination from former heavy industrial activities, namely a former local coal-fired power plant, in urban soils and attic dust in Salgótarján, Hungary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!