Unlabelled: Sheehan's syndrome (SHS) is a rare condition related to the risk of osteoporosis and evaluation of bone texture imaging features on panoramic radiographs would be suitable for this condition, which was the aim of the present study. Fractal dimension, lacunarity, and trabecular morphologic aspects were significantly altered in these patients.

Introduction: SHS is an important public health problem particularly in developing countries. It is characterized as postpartum hypopituitarism secondary to obstetric complications-related ischemic pituitary necrosis that shows significant systemic metabolic repercussions. Thus, this study aimed to evaluate bone texture parameters in digital panoramic radiographs of patients with SHS.

Methods: A case-control study was conducted with 30 SHS patients from an Endocrinology and Diabetology Service of reference in Brazil, and 30 age- and sex-matched healthy controls. A custom computer program measured fractal dimension, lacunarity, and some morphologic features in the following mandibular regions of interest (50 × 50 pixels): below the mental foramen (F1), between the first and second molars (M1), and at the center of the mandibular ramus (R1).

Results: The fractal analysis showed a statistically significant difference between the studied groups in all regions of interest. The fractal dimension in F1 (p = 0.016), M1 (p = 0.043), and R1 (p = 0.028) was significantly lower in SHS group, as well as lacunarity in R1 (p = 0.008). Additionally, several morphologic features were statistically significant in the SHS group (p < 0.05).

Conclusion: Therefore, individuals with SHS showed altered imaging texture parameters on panoramic radiographs, which reflect a smaller spatial organization of the bone trabeculae and, possibly, a state of reduced mineral bone density.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00198-019-05086-4DOI Listing

Publication Analysis

Top Keywords

bone texture
12
panoramic radiographs
12
fractal dimension
12
evaluation bone
8
texture imaging
8
radiographs patients
8
sheehan's syndrome
8
case-control study
8
dimension lacunarity
8
morphologic features
8

Similar Publications

Unlabelled: The dual-energy spectral CT (DEsCT) employs material decomposition (MD) technology, opening up novel avenues for the opportunistic assessment of bone status. Radiomics, a powerful tool for elucidating the structural and textural characteristics of bone, aids in the detection of mineral loss. Therefore, this study aims to compare the efficacy of bone status assessment using both bone density measurements and radiomics models derived from MD images and to further explore the clinical value of radiomics models.

View Article and Find Full Text PDF

Application of Pathomic Features for Differentiating Dysplastic Cells in Patients with Myelodysplastic Syndrome.

Bioengineering (Basel)

December 2024

Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Republic of Korea.

Myelodysplastic syndromes (MDSs) are a group of hematologic neoplasms accompanied by dysplasia of bone marrow (BM) hematopoietic cells with cytopenia. Recently, digitalized pathology and pathomics using computerized feature analysis have been actively researched for classifying and predicting prognosis in various tumors of hematopoietic tissues. This study analyzed the pathomic features of hematopoietic cells in BM aspiration smears of patients with MDS according to each hematopoietic cell lineage and dysplasia.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF

Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!