Lack of access to clean water is a major global issue that affects millions of people worldwide. Drinking contaminated water can be extremely hazardous, so it is imperative that it is tested sufficiently. One method commonly used to determine the quality of water is testing for both E. coli and total coliform. Here, we present a cost-effective and automated device which can concurrently test drinking water samples for both E. coli and total coliform using an EPA-approved reagent. Equipped with a Raspberry Pi microcontroller and camera, we perform automated periodic measurements of both the absorption and fluorescence of the water under test over 24 hours. In each test, 100 mL of the water sample is split into a custom designed 40-well plate, where the transmitted blue light and the fluorescent light (under UV excitation) are collected by 520 individual optical fibers. Images of these fiber outputs are then acquired periodically, and digitally processed to determine the presence of the bacteria in each well of the 40-well plate. We demonstrate that this cost-effective device, weighing 1.66 kg, can automatically detect the presence of both E. coli and total coliform in drinking water within ∼16 hours, down to a level of one colony-forming unit (CFU) per 100 mL. Furthermore, due to its automated analysis, this approach is also more sensitive than a manual count performed by an expert, reducing the time needed to determine whether the water under test is safe to drink or not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9lc00652d | DOI Listing |
The sarcin-ricin loop (SRL) is one of the most conserved segments of ribosomal RNA (rRNA). Translational GTPases (trGTPases), such as EF-G and EF-Tu and IF2, form contacts with the SRL that are critical for GTP hydrolysis and factor function. Previous studies showed that expression of 23S rRNA lacking the SRL confers a dominant lethal phenotype in E.
View Article and Find Full Text PDFBio Protoc
January 2025
Biochemistry Department, Western University, London, Canada.
Chloroplast genomes present an alternative strategy for large-scale engineering of photosynthetic eukaryotes. Prior to our work, the chloroplast genomes of (204 kb) and (140 kb) had been cloned using bacterial and yeast artificial chromosome (BAC/YAC) libraries, respectively. These methods lack design flexibility as they are reliant upon the random capture of genomic fragments during BAC/YAC library creation; additionally, both demonstrated a low efficiency (≤ 10%) for correct assembly of the genome in yeast.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.
View Article and Find Full Text PDFHospital wastewater (HWW) is a major pollutant that presents significant risks to both environmental and human health. In this study, we developed a novel, inexpensive and highly antibacterial magnetic nanocomposite composed of FeO nanoparticles synthesised from spent pickling liquors, coated with chitosan and then integrated with polyhexamethylene guanidine hydrochloride (FeO@CS@PHMG) using sodium tripolyphosphate (TPP) as a crosslinking agent. The obtained results revealed that the synthesised nanocomposite exhibited high antibacterial activity against and .
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
Walnut husk extract (WHE) and pomegranate peel extract (PPE) were produced through ultrasound-assisted extraction. Total phenol, flavonoid and tannin contents (TPC, TFC and TTC), antioxidant and antimicrobial activities were determined. The best extracts were used for production of alginate (Alg) and chitosan (CS)-coated nanoemulsions containing WHE (NWHE) or PPE (NPPE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!