Introduction: Clinical applications of bioactive materials are increasing in biomedical tissue engineering. This study sought to assess the effect of calcium enriched mixture (CEM) cement, Biodentine, mineral trioxide aggregate (MTA), octacalcium phosphate (OCP), and Atlantik on proliferation, odontogenic/osteogenic differentiation, and pro-inflammatory cytokine production by human stem cells of the apical papilla (SCAPs).
Materials And Methods: Proliferation of SCAPs treated with different biomaterials was evaluated using trypan blue exclusion test and flow cytometry. Differentiation of cells was evaluated using ALP activity, alizarin red staining, and RT-PCR. The expression of genes of pro-inflammatory cytokines was also evaluated using RT-PCR.
Results: The SCAPs treated with biomaterials showed significantly higher proliferation, increased ALP activity, higher number of calcified nodules, and up-regulation of genes related to odontogenic/osteogenic markers compared to the control group. The expression of pro-inflammatory cytokines increased in all groups compared to the control group.
Conclusion: The tested biomaterials could induce odontogenic/osteogenic differentiation in SCAPs. MTA had a greater potential for induction of differentiation of SCAPs to odontoblast-like cells while OCP had higher potential to induce differentiation of SCAPs to osteoblast-like cells (MTA↔ BD↔ CEM↔ Atlantik↔ OCP).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636314 | PMC |
http://dx.doi.org/10.2147/CCIDE.S211893 | DOI Listing |
Int Endod J
October 2024
Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.
Aim: This study investigated the effects of the inflammatory microenvironment of moderate pulpitis on biological properties of human dental pulp stem cells (DPSCs) and further explored the mechanism involved in osteo-/odontogenic induction of the inflammatory microenvironment.
Methodology: Healthy DPSCs (hDPSCs) and inflammatory DPSCs (iDPSCs) were isolated from human-impacted third molars free of caries and clinically diagnosed with moderate pulpitis, respectively. Healthy DPSCs were treated with lipopolysaccharides (LPS) to mimic iDPSCs in vitro.
Biotechnol Lett
April 2024
Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
Purpose: Currently, regenerative endodontic treatments are gaining more and more attention, and stem cells play a significant role in these treatments. In order to enhance stem cell proliferation and differentiation, a variety of methods and materials have been used. The purpose of this study was to determine the effects of magnesium oxide nanoparticles and LED irradiation on the survival and differentiation of human stem cells from apical papilla.
View Article and Find Full Text PDFMol Biol Rep
November 2023
Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: An experimental study was conducted to examine whether melatonin influences osteogenic/odontogenic differentiation of human stem cells derived from the apical papilla (hSCAPs).
Materials And Methods: In order to isolate hSCAPs, the undeveloped root of a third molar of a human tooth was used. Melatonin was administered to the experimental groups in an osteogenic medium.
Bioengineering (Basel)
April 2023
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Concentrated growth factors (CGF) is the newest generation platelet concentrate product, which has been reported to promote the proliferation and differentiation of human dental pulp cells (hDPCs). However, the effect of liquid phase of CGF (LPCGF) has not been reported. This study was aimed to evaluate the influence of LPCGF on the biological properties of hDPCs, and to explore the in vivo mechanism of dental pulp regeneration based on the hDPCs-LPCGF complex transplantation.
View Article and Find Full Text PDFCell Reprogram
April 2023
Department of Endodontics, Guiyang Hospital of Stomatology, Guiyang, China.
Exosomes are one kind of small-cell extracellular membranous vesicles that can regulate intercellular communication and give rise to mediating the biological behaviors of cells, involving in tissue formation, repair, the modulation of inflammation, and nerve regeneration. The abundant kinds of cells can secret exosomes, among them, mesenchymal stem cells (MSCs) are very perfect cells for mass production of exosomes. Dental tissue-derived mesenchymal stem cells (DT-MSCs), including dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, stem cells from human periodontal ligament (PDLSCs), gingiva-derived mesenchymal stem cells, dental follicle stem cells, tooth germ stem cells, and alveolar bone-derived mesenchymal stem cells, are now known as a potent tool in the area of cell regeneration and therapy, more importantly, DT-MSCs can also release numerous types of exosomes, participating in the biological functions of cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!