Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Humans cause widespread evolutionary change in nature, but we still know little about the genomic basis of rapid adaptation in the Anthropocene. We tracked genomic changes across all protein-coding genes in experimental fish populations that evolved pronounced shifts in growth rates due to size-selective harvest over only four generations. Comparisons of replicate lines show parallel allele frequency shifts that recapitulate responses to size-selection gradients in the wild across hundreds of unlinked variants concentrated in growth-related genes. However, a supercluster of genes also rose rapidly in frequency and dominated the evolutionary dynamic in one replicate line but not in others. Parallel phenotypic changes thus masked highly divergent genomic responses to selection, illustrating how contingent rapid adaptation can be in the face of strong human-induced selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aaw7271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!