Melatonin has been shown to enhance tear secretion associated with dinucleotide diadenosine tetraphosphate. This study investigated the isolated action of melatonin and its analogs, agomelatine, -butanoyl-2-(2-methoxy-6-isoindolo[2,1-]indol-11-yl) ethanamine (IIK7), and 5-methoxycarbonylamino--cetyltryptamine (5-MCA-NAT) (10 l at 100 M), on tear secretion when applied topically in the rabbit cornea and its relationship with the melatonin MT1, MT2, and MT3/quinone reductase QR2 receptors. The results showed a significant increase in tear secretion, with a maximal effect at 60 minutes for the agonists (138.9% ± 6.5%, 128.9% ± 6.4%, and 120.0% ± 5.2%, respectively; < 0.05; 100% control) but not for melatonin (101.6% ± 7.9%; > 0.05). Agonist action was tested combined with the antagonists DH97 (MT2 selective), prazosin (MT3/QR2 inhibitor), and luzindole (nonselective MT membrane receptor) (10 l at 100 M). DH97 reversed the effect of agomelatine, IIK7, and 5-MCA-NAT up to 30.85% ± 7.6%,108% ± 7.2%, and 87.01% ± 7.6%, respectively ( < 0.05; 100% control). Luzindole antagonized agomelatine and 5-MCA-NAT up to 67.35% ± 7.6% and 92.12% ± 8%, respectively ( < 0.05). Prazosin only reversed 5-MCA-NAT action up to 84.2% ± 7.7% ( < 0.05). These results suggest different pathways for the agonists to act through MT membrane receptors. Therefore, agomelatine, IIK7, and 5-MCA-NAT act through MT membrane receptors as secretagogues of tear secretion, and these analogs could be considered excellent therapeutic candidates for dry eye treatment. SIGNIFICANCE STATEMENT: Currently, dry eye with aqueous deficit is treated by adding artificial tears palliatively. This study shows that topical installation of three melatonin analogs (agomelatine, IIK7, and 5-MCA-NAT), but not melatonin, in therapeutic doses in the rabbit cornea significantly increases tear production, acting through different melatonin membrane receptor subtypes. Therefore, this study suggests that melatoninergic compounds could be considered excellent therapeutic candidates for dry eye treatment and ocular surface diseases occurring with a reduction in tear production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.119.259192 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Laboratoire de Physiopathologie et Régulation des Transports Ioniques, Université de Poitiers, France.
Despite the importance of ocular surface in human physiology and diseases, little is known about ion channel expression, properties and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse and especially rabbit animal models. Here, we developed primary human Meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea. Electronic address:
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India.
Purpose: Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Professor, Department of Ophthalmology, King George's Medical University, Lucknow, India.
Statement Of Problem: Clinical studies evaluating the levels of interleukin-1 beta (IL-1β) in tears and conjunctival secretions of patients with ocular defects after using ocular prostheses are lacking. Therefore, a comparative evaluation of IL-1β levels in the defective eye before and after placement of an ocular prosthesis is needed.
Purpose: The purpose of this clinical study was to compare the microbiota and IL-1β in tears and conjunctival secretions of patients with an ocular defect after using an ocular prosthesis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!