Precise Long-Range Microcircuit-to-Microcircuit Communication Connects the Frontal and Sensory Cortices in the Mammalian Brain.

Neuron

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

Published: October 2019

The frontal area of the cerebral cortex provides long-range inputs to sensory areas to modulate neuronal activity and information processing. These long-range circuits are crucial for accurate sensory perception and complex behavioral control; however, little is known about their precise circuit organization. Here we specifically identified the presynaptic input neurons to individual excitatory neuron clones as a unit that constitutes functional microcircuits in the mouse sensory cortex. Interestingly, the long-range input neurons in the frontal but not contralateral sensory area are spatially organized into discrete vertical clusters and preferentially form synapses with each other over nearby non-input neurons. Moreover, the assembly of distant presynaptic microcircuits in the frontal area depends on the selective synaptic communication of excitatory neuron clones in the sensory area that provide inputs to the frontal area. These findings suggest that highly precise long-range reciprocal microcircuit-to-microcircuit communication mediates frontal-sensory area interactions in the mammalian cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813886PMC
http://dx.doi.org/10.1016/j.neuron.2019.06.028DOI Listing

Publication Analysis

Top Keywords

frontal area
12
precise long-range
8
microcircuit-to-microcircuit communication
8
input neurons
8
excitatory neuron
8
neuron clones
8
sensory area
8
sensory
6
area
6
frontal
5

Similar Publications

People with aphasia show stable Cumulative Semantic Interference (CSI) when tested repeatedly in a web-based paradigm: A perspective for longitudinal assessment.

Cortex

December 2024

Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University Hospital and Faculty of Medicine Leipzig, Clinic for Cognitive Neurology, Leipzig, Germany.

Retrieving words quickly and correctly is an important language competence. Semantic contexts, such as prior naming of categorically related objects, can induce conceptual priming but also lexical-semantic interference, the latter likely due to enhanced competition during lexical selection. In the continuous naming (CN) paradigm, such semantic interference is evident in a linear increase in naming latency with each additional member of a category out of a seemingly random sequence of pictures being named (cumulative semantic interference/CSI effect).

View Article and Find Full Text PDF

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

Fibrous Dysplasia of the Ethmoid Bone Diagnosed in a 10-Year-Old Patient.

Medicina (Kaunas)

December 2024

Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wrocław, Poland.

Fibrous dysplasia is an uncommon bone disorder affecting various parts of the skeleton, often affecting facial and cranial bones. In this case, a 10-year-old patient was diagnosed with fibrous dysplasia of the ethmoid sinus at an early age. The patient has experienced nasal congestion, snores, and worsening nasal patency since 2019.

View Article and Find Full Text PDF

Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.

View Article and Find Full Text PDF

The role of the somatosensory cortex in self-paced movement impairment in Parkinson's disease.

Clin Neurophysiol

January 2025

Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic. Electronic address:

Objective: The aim of this work was to study the differences at the whole-brain level between self-paced and cued movement processing in Parkinson's disease (PD).

Methods: High density electroencephalogram (HD-EEG) was recorded during the performance of self-paced movements (Bereitschaftspotential - BP) and visually cued movements (VMT) in PD patients (n = 38) and in a group of healthy controls (HC, n = 23). Oscillatory changes in the alpha, beta, and gamma frequencies were evaluated and correlated to the clinical scales- MDS-UPDRS and Freezing of Gait Questionnaire (FOGQ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!