Pulsatile illumination for photobiology and optogenetics.

Methods Enzymol

Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany; Research Center for Bio-Macromolecules, Universität Bayreuth, Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany. Electronic address:

Published: May 2020

Living organisms exhibit a wide range of intrinsic adaptive responses to incident light. Likewise, in optogenetics, biological systems are tailored to initiate predetermined cellular processes upon light exposure. As genetically encoded, light-gated actuators, sensory photoreceptors are at the heart of these responses in both the natural and engineered scenarios. Upon light absorption, photoreceptors enter a series of generally rapid photochemical reactions leading to population of the light-adapted signaling state of the receptor. Notably, this state persists for a while before thermally reverting to the original dark-adapted resting state. As a corollary, the inactivation of photosensitive biological circuits upon light withdrawal can exhibit substantial inertia. Intermittent illumination of suitable pulse frequency can hence maintain the photoreceptor in its light-adapted state while greatly reducing overall light dose, thereby mitigating adverse side effects. Moreover, several photoreceptor systems may be actuated sequentially with a single light color if they sufficiently differ in their inactivation kinetics. Here, we detail the construction of programmable illumination devices for the rapid and parallelized testing of biological responses to diverse lighting regimes. As the technology is based on open electronics and readily available, inexpensive components, it can be adopted by most laboratories at moderate expenditure. As we exemplify for two use cases, the programmable devices enable the facile interrogation of diverse illumination paradigms and their application in optogenetics and photobiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2019.04.005DOI Listing

Publication Analysis

Top Keywords

light
6
pulsatile illumination
4
illumination photobiology
4
photobiology optogenetics
4
optogenetics living
4
living organisms
4
organisms exhibit
4
exhibit wide
4
wide range
4
range intrinsic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!