A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats. | LitMetric

The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats.

FASEB J

Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.

Published: November 2019

The impact of the mitochondria-targeted antioxidant MitoQ was evaluated in the metabolic alterations and the adipose tissue remodeling associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 35% fat) or a standard diet (3.5% fat) for 7 wk and treated with MitoQ (200 µM). A proteomic analysis of visceral adipose tissue from patients with obesity and patients without obesity was performed. MitoQ partially prevented the increase in body weight, adiposity, homeostasis model assessment index, and adipose tissue remodeling in HFD rats. It also ameliorated protein level changes of factors involved in insulin signaling observed in adipose tissue of obese rats: reductions in adiponectin and glucose transporter 4 (GLUT 4) and increases in dipeptidylpeptidase 4, suppressor of cytokine signaling 3 (SOCS3), and insulin receptor substrate 1 phosphorylation. MitoQ prevented down-regulation of adiponectin and GLUT 4 and increases in SOCS3 levels in a TNF-α-induced insulin-resistant 3T3-L1 adipocyte model. MitoQ also ameliorated alterations in mitochondrial proteins observed in obese rats: increases in cyclophylin F and carnitine palmitoyl transferase 1A and reductions in mitofusin1, peroxiredoxin 4, and fumarate hydratase. The proteomic analysis of the visceral adipose tissue from patients with obesity show alterations in mitochondrial proteins similar to those observed in obese rats. Therefore, the data show the beneficial effect of MitoQ in the metabolic dysfunction induced by obesity.-Marín-Royo, G., Rodríguez, C., Le Pape, A., Jurado-López, R., Luaces, M., Antequera, A., Martínez-González, J., Souza-Neto, F. V., Nieto, M. L., Martínez-Martínez, E., Cachofeiro, V. The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902682PMC
http://dx.doi.org/10.1096/fj.201900347RRDOI Listing

Publication Analysis

Top Keywords

adipose tissue
20
metabolic alterations
12
patients obesity
12
obese rats
12
role mitochondrial
8
mitochondrial oxidative
8
oxidative stress
8
stress metabolic
8
alterations diet-induced
8
diet-induced obesity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!