Real-time separation of non-stationary sound fields on spheres.

J Acoust Soc Am

College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.

Published: July 2019

The sound field separation methods can separate the target field from the interfering noises, facilitating the study of the acoustic characteristics of the target source, which is placed in a noisy environment. However, most of the existing sound field separation methods are derived in the frequency-domain, thus they are best suited for separating stationary sound fields. In this paper, a time-domain sound field separation method is developed that can separate the non-stationary sound field generated by the target source over a sphere in real-time. A spherical array sets up a boundary between the target source and the interfering sources, such that the outgoing field on the array is only generated by the target source. The proposed method decomposes the pressure and the radial particle velocity measured by the array into spherical harmonic coefficients, and recovers the target outgoing field based on the time-domain relationship between the decomposition coefficients and the theoretically derived spatial filter responses. Simulations show the proposed method can separate non-stationary sound fields both in free field and room environments, and over a longer duration with small errors. The proposed method could serve as a foundation for developing future time-domain spatial sound field manipulation algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.5114819DOI Listing

Publication Analysis

Top Keywords

sound field
20
target source
16
non-stationary sound
12
sound fields
12
field separation
12
proposed method
12
field
9
sound
8
separation methods
8
separate non-stationary
8

Similar Publications

Pile driving for offshore wind turbines typically generates high sound levels in the water column. Bubble curtains are frequently employed to protect marine fauna. This study aims to investigate the effect of a bubble curtain on the generated sound wave field.

View Article and Find Full Text PDF

The dataset represents a significant advancement in Bengali lip-reading and visual speech recognition research, poised to drive future applications and technological progress. Despite Bengali's global status as the seventh most spoken language with approximately 265 million speakers, linguistically rich and widely spoken languages like Bengali have been largely overlooked by the research community. fills this gap by offering a pioneering dataset tailored for Bengali lip-reading, comprising visual data from 150 speakers across 54 classes, encompassing Bengali phonemes, alphabets, and symbols.

View Article and Find Full Text PDF

Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.

View Article and Find Full Text PDF

Due to various factors, the concrete may contain mud, a condition that can lead to a decrease in strength and changes in the ultrasonic acoustic parameters of the concrete. In order to study the effect of concrete mud content ([Formula: see text]) on ultrasonic acoustic parameters and compressive strength, this paper firstly derived the relationship equations between concrete mud content and acoustic parameters and compressive strength. Subsequently, the acoustic parameters and compressive strength were tested for concrete specimens with different mud contents cast on site.

View Article and Find Full Text PDF

We appreciate Reierson's thoughtful commentary on our 2019 paper, which described our experiences, ethical process, judgment calls, and lessons from a 2016-2017 data-sharing pilot between Crisis Text Line and academic researchers. The commentary raises important questions about the ethical conduct of health research in the digital age, particularly regarding informed consent, potential conflicts of interest, and the protection of vulnerable populations. Our article focused specifically on the noncommercial use of Crisis Text Line data for research purposes, so we restrict our reply to points relevant to such usage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!