An array's constituent sensors could be spatially dislocated from their nominal positions. This paper investigates how such sensor dislocation would degrade a uniform circular array (UCA) of isotropic sensors (like pressure sensors) in their direction-finding precision. This paper analytically derives this direction finding's hybrid Cramér-Rao bound (HCRB) in a closed form that is expressed explicitly in terms of the sensors' dislocation parameters. In the open literature on UCA direction finding, this paper is the first to be three-dimensional in modeling the sensors' dislocation. Perhaps unexpectedly to some readers, sensor dislocation could improve and not necessarily degrade the HCRB; these opposing effects depend on the dislocation variances, the incident source's arrival angle, and the signal-to-noise power ratio-all analyzed rigorously in this paper. Interesting insights are thereby obtained: (a) The HCRB is enhanced for the impinging source's polar arrival angle as the sensors become more dislocated along the impinging wavefront due to aperture enlargement over the stochastic dislocation's probability space. (b) Likewise, the HCRB is improved for the azimuth arrival angle as the sensors become more dislocated on the circular array's plane, also due to aperture enlargement. (c) In contrast, sensor dislocation along the incident signal's propagation direction can only worsen the HRCBs due to nuisance-parameter effects in the Fisher information. (d) Sensor dislocation orthogonal to the array plane must degrade the HCRB for the azimuth arrival angle but could improve the HCRB for the polar arrival angle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.5098771 | DOI Listing |
Sci Rep
January 2025
Department of Radiation Oncology, Henry Ford Hospital, Detroit, USA.
Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Physics, Xidian University, Xi'an 710071, China.
Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the complex nature of multipath propagation. Traditional approaches typically focus on NLOS node identification and error mitigation techniques. However, the intricacies of NLOS localization are intrinsically tied to propagation challenges.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.
Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.
View Article and Find Full Text PDFNature
January 2025
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada.
Sci Rep
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!