We have measured the spectrum of laser photodissociation of OH molecular ions to O + H and O + H fragments for photon energies of 38 100-40 900 cm. The OH ions were stored as a fast beam (5.50 MeV) in the storage ring TSR for several seconds to achieve rovibrational cooling into the lowest rotations N'' = 0-11 of the vibrational ground state XΣ(v'' = 0), close to room temperature (≈300 K). The many resonances in the spectra reveal the energies, widths, and O/O branching ratios of 44 predissociating quasibound levels (Feshbach resonances) that lie between the fine-structure states of the O fragment and belong to the last, near-threshold vibrational states v' = 9 and 10 of the AΠ electronic state. For the AΠ substates, isolated levels with v' = 11 are observed and attributed to double-well distortions of these curves due to nonadiabatic interactions. Another five isolated levels are assigned to the v' = 0 and 1 states of the shallow 1Σ electronic state, borrowing oscillator strength from nearby AΠ levels. Together, the near-threshold levels deliver a new value D = 40 253.8(1.1) cm for the dissociation energy of OH. Through a two-step photodissociation process, 72 levels from the lower bound states AΠ(v' = 7-8) appear as well and are rotationally analyzed. The level energies are used to construct improved AΠ and 1Σ Born-Oppenheimer potentials. The totality of the spectral data (energies, widths, intensities, and branching ratios) can provide tight constraints for the potentials and nonadiabatic interactions assumed in future coupled-channel calculations of OH photodissociation or of the related charge-exchange reaction O + H → O + H.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5098321DOI Listing

Publication Analysis

Top Keywords

energies widths
8
branching ratios
8
electronic state
8
isolated levels
8
nonadiabatic interactions
8
levels
6
near-threshold photodissociation
4
photodissociation cool
4
cool measured
4
measured spectrum
4

Similar Publications

Upper Limit on the Photoproduction Cross Section of the Spin-Exotic π_{1}(1600).

Phys Rev Lett

December 2024

Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA.

The spin-exotic hybrid meson π_{1}(1600) is predicted to have a large decay rate to the ωππ final state. Using 76.6  pb^{-1} of data collected with the GlueX detector, we measure the cross sections for the reactions γp→ωπ^{+}π^{-}p, γp→ωπ^{0}π^{0}p, and γp→ωπ^{-}π^{0}Δ^{++} in the range E_{γ}=8-10  GeV.

View Article and Find Full Text PDF

High-resolution optical diagnostics in the short wavelength infrared (SWIR II) region have gained significant attention in medical research, showing great potential for tissue spectroscopy and visualization due to the region's low water absorption and scattering coefficients. However, high-beam-quality sources covering an entire spectral range are limited. This paper presents the development of a femtosecond Cr:ZnSe laser with a 2.

View Article and Find Full Text PDF

Large energy single-frequency nanosecond (ns) near-infrared light source is an essential device in the field of the remote chemical analysis based on the laser-induced breakdown spectroscopy (LIBS). In this paper, a large energy single-frequency ns 824 nm light source with high repetition rate is presented, which is generated from a seed-injection locked optical parametric oscillator (OPO). By optimizing the spot radius of the pump laser and the mode-matching between the pump laser and signal light, the optical parametric generation (OPG) process is effectively eliminated.

View Article and Find Full Text PDF

The coupling effect of gamma-ray radiation and 532 nm nanosecond laser radiation on optical coatings and substrates was investigated. Fused silica and S-BSL7 glass with 532 nm high reflectivity (HR) coatings were irradiated using Co gamma-ray source at a dose rate of 1 Gy/s for a total dose of 1-500 kGy. After irradiation, the samples were subjected to raster scan testing using a laser with a pulse width of approximately 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!