A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar. | LitMetric

Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar.

J Chem Phys

Dassault Systèmes, BIOVIA, 334, Cambridge Science Park, Cambridge CB4 0WN, United Kingdom.

Published: July 2019

Classical trajectory simulations of intermolecular collisions were performed for a series of polycyclic aromatic hydrocarbons interacting with the bath gases helium and argon for bath gas temperature from 300 to 2500 K. The phase-space average energy transferred per deactivating collision, ⟨∆E⟩, was obtained. The Buckingham pairwise intermolecular potentials were validated against high-level quantum chemistry calculations and used in the simulations. The reactive force-field was used to describe intramolecular potentials. The dependence of ⟨∆E⟩ on initial vibrational energy is discussed. A canonical sampling method was compared with a microcanonical sampling method for selecting initial vibrational energy at high bath gas temperatures. Uncertainties introduced by the initial angular momentum distribution were identified. The dependence of the collisional energy transfer parameters on the type of bath gas and the molecular structure of polycyclic aromatic hydrocarbons was examined.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5094104DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
12
aromatic hydrocarbons
12
bath gas
12
energy transfer
8
intermolecular collisions
8
bath gases
8
initial vibrational
8
vibrational energy
8
sampling method
8
energy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!