Off-the-shelf DFT-DISPersion methods: Are they now "on-trend" for organic molecular crystals?

J Chem Phys

Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.

Published: July 2019

Organic molecular crystals contain long-range dispersion interactions that can be challenging for solid-state methods such as density functional theory (DFT) to capture, and in some industrial sectors are overlooked in favor of classical methods to calculate atomistic properties. Hence, this publication addresses the critical question of whether dispersion corrected DFT calculations for organic crystals can reproduce the structural and energetic trends seen from experiment, i.e., whether the calculations can now be said to be truly "on-trend." In this work, we assess the performance of three of the latest dispersion-corrected DFT methods, in calculating the long-range, dispersion energy: the pairwise methods of D3(0) and D3(BJ) and the many-body dispersion method, MBD@rsSCS. We calculate the energetics and optimized structures of two homologous series of organic molecular crystals, namely, carboxylic acids and amino acids. We also use a classical force field method (using COMPASS II) and compare all results to experimental data where possible. The mean absolute error in lattice energies is 9.59 and 343.85 kJ/mol (COMPASS II), 10.17 and 16.23 kJ/mol (MBD@rsSCS), 10.57 and 18.76 kJ/mol [D3(0)], and 8.52 and 14.66 kJ/mol [D3(BJ)] for the carboxylic acids and amino acids, respectively. MBD@rsSCS produces structural and energetic trends that most closely match experimental trends, performing the most consistently across the two series and competing favorably with COMPASS II.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5108829DOI Listing

Publication Analysis

Top Keywords

organic molecular
12
molecular crystals
8
long-range dispersion
8
structural energetic
8
energetic trends
8
carboxylic acids
8
acids amino
8
amino acids
8
methods
5
off-the-shelf dft-dispersion
4

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Cross-Coupling of Carbonyl Derivatives and -Arylamines Enabled by Visible Light for Easy Access to 1,2-Amino Alcohols.

J Org Chem

January 2025

International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.

We disclosed a new strategy for the synthesis of 1,2-amino alcohols enabled by visible light without the requirement of a photocatalyst and metal. Under light irradiation at 400 nm, the reaction of carbonyl derivatives and -arylamines proceeds via an electron-donor-acceptor (EDA) intermediate, obtaining diverse vicinal amino alcohols decorated with a two-electron-rich/-deficient aryl group.

View Article and Find Full Text PDF

Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl Treatment Be the Answer?

Environ Sci Technol

January 2025

Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!