Kinetic inductance bolometer technology is a candidate for passive submillimeter wave and terahertz imaging systems. Its benefits include scalability into large 2D arrays and operation with intermediate cryogenics in the temperature range of 5-10 K. We have previously demonstrated the scalability in terms of device fabrication, optics integration, and cryogenics. In this article, we address the last missing ingredient, the readout. The concept, serial addressed frequency excitation, is an alternative to full frequency-division multiplexing at microwave frequencies conventionally used to read out kinetic inductance detectors. We introduce the concept and analyze the criteria of the multiplexed readout avoiding the degradation of the signal-to-noise ratio in the presence of a thermal anti-alias filter inherent to thermal detectors. We present a practical scalable realization of a readout system integrated into a prototype imager with 8712 detectors. This is used for demonstrating the noise properties of the readout. Furthermore, we present practical detection experiments with a stand-off laboratory-scale imager.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5091754 | DOI Listing |
Rev Sci Instrum
November 2024
Department of Physics, University of California, Santa Barbara, California 93106, USA.
Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors capable of single-photon counting with energy resolution across the ultraviolet, optical, and infrared (UVOIR) spectrum with microsecond timing precision. MKIDs are also multiplexable, providing a feasible way to create large-format, cryogenic arrays for sensitive imaging applications in biology, astronomy, and quantum information. Building large, cryogenic MKID arrays requires processing highly multiplexed, wideband readout signals in real time; this task has previously required large, heavy, and power-intensive custom electronics.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
Institute of Superconductivity, Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
We present a MgB-based Microwave Kinetic Inductance Detector (MKID) featuring a quality factor Q ~ 10 and noise equivalent power NEP ~ 10 W/Hz at 2 K. In comparison to YBCO-based MKIDs, the MgB detector shows greater sensitivity to both temperature and magnetic field, a result of its two-gap nature and relatively low critical Hc2 field. Our data indicate that MgB is more advantageous for MKID applications at temperatures lower than 3 K.
View Article and Find Full Text PDFSingle-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale spectroscopic imaging or photonic quantum computing applications, the size of visible to near-infrared transition-edge sensor arrays and their associated readouts must be increased from a few pixels to many thousands. In this manuscript, we introduce the kinetic inductance current sensor, a scalable readout technology that exploits the nonlinear kinetic inductance in a superconducting resonator to make sensitive current measurements.
View Article and Find Full Text PDFACS Nano
October 2024
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States.
Progress in superconducting device and detector technologies over the past decade has realized practical applications in quantum computers, detectors for far-infrared telescopes, and optical communications. Superconducting thin-film materials, however, have remained largely unchanged, with aluminum still being the material of choice for superconducting qubits and niobium compounds for high-frequency/high kinetic inductance devices. Magnesium diboride (MgB), known for its highest transition temperature ( = 39 K) among metallic superconductors, is a viable material for elevated temperature and higher frequency superconducting devices moving toward THz frequencies.
View Article and Find Full Text PDFSci Adv
September 2024
Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany.
The moiré superconductor magic-angle twisted bilayer graphene (MATBG) shows exceptional properties, with an electron (hole) ensemble of only ~10 carriers per square centimeter, which is five orders of magnitude lower than traditional superconductors (SCs). This results in an ultralow electronic heat capacity and a large kinetic inductance of this truly two-dimensional SC, providing record-breaking parameters for quantum sensing applications, specifically thermal sensing and single-photon detection. To fully exploit these unique superconducting properties for quantum sensing, here, we demonstrate a proof-of-principle experiment to detect single near-infrared photons by voltage biasing an MATBG device near its superconducting phase transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!