A symmetric Talbot-Lau neutron grating interferometer has been developed for achieving high phase sensitivity. The gratings for the interferometer have been designed by maximizing the intergrating distances available at the experimental facility and optimizing the period of the gratings. The phase sensitivity in a Talbot-Lau grating interferometer has been mathematically modeled and analyzed and compared with experimental data. Evaluation experiments have been performed at the cold neutron imaging facility of the NIST Center for Neutron Research. The symmetric Talbot-Lau neutron grating interferometer exhibits distinct advantages in terms of high sensitivity and wide range for dark-field contrast imaging. Also, the fabrication of gratings is made easier, simpler, and more economical by the Gadox powder filling method, which gives them excellent phase contrast compared with other geometric Talbot-Lau neutron grating interferometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5089588 | DOI Listing |
Sensors (Basel)
January 2025
Soreq NRC, Yavne 81800, Israel.
Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.
View Article and Find Full Text PDFSci Rep
January 2025
High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan.
Neutron imaging is a nondestructive and noninvasive inspection technique with a wide range of potential applications. However, the fundamentals of this technique still need to be improved, one of which involves achieving micrometer scale or even better resolution, which is a challenging task. Recently, a high-resolution neutron imaging device based on fine-grained nuclear emulsions was developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Luminescent Materials and Devices &, South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy &, Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China.
Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complex with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting.
View Article and Find Full Text PDFAdv Mater
December 2024
Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
J Appl Crystallogr
January 2024
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Hierarchical structures and heterogeneous materials are found in many natural and engineered systems including additive manufacturing, alternative energy, biology and polymer science. Though the structure-function relationship is important for developing more advanced materials, structural characterization over broad length scales often requires multiple complementary measurements. Neutron far-field interferometry aims to enable multi-scale characterization by combining the best of neutron imaging with small-angle neutron scattering (SANS) via dark-field imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!