Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective methods of accelerating the bone regeneration healing process are in demand for a number of bone-related diseases and trauma. This work developed scaffolds with improved properties for bone tissue engineering by electrospinning composite polycaprolactone-gelatin-hydroxyapatite-niobium pentoxide (PGHANb) membranes. Composite membranes, with average fiber diameters ranging from 123 to 156 nm, were produced by adding hydroxyapatite (HA) and varying concentrations of niobium pentoxide (NbO) particles (0, 3, 7, and 10 wt%) to a polycaprolactone (PCL) and gelatin (GL) matrix prior to electrospinning. The morphology, mechanical, chemical and biological properties of resultant membranes were evaluated. Bioactivity was assessed using simulated body fluid (SBF) and it confirmed that the presence of particles induced the formation of hydroxyapatite crystals on the surface of the membranes. Samples were hydrophilic and cell metabolism results showed that the niobium-containing membranes were non-toxic while improving cell proliferation and differentiation compared to controls. This study demonstrated that electrospun membranes containing HA and NbO particles have potential to promote cell adhesion and proliferation while exhibiting bioactive properties. PGHANb membranes are promising candidates for bone tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!