A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring cardiac plasticity in teleost: the role of humoral modulation. | LitMetric

Exploring cardiac plasticity in teleost: the role of humoral modulation.

Gen Comp Endocrinol

Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy.

Published: November 2019

The fish heart represents an established natural model for evaluating basic mechanisms of the coordinated physiological reactions which maintain cardiac steady-state. This is due to its relatively simple design, but also to its multilevel morpho-functional flexibility which allows adequate responses to a variety of intrinsic (body size and shape, swimming performance, etc.), and extrinsic (temperature, salinity, oxygen level, water chemistry, etc.) factors related to the animal life style. Nowadays, although many gaps are still present, a huge literature is available about the mechanisms that fine-tune fish cardiac performance, particularly in relation to the influence exerted by substances possessing cardio-modulatory properties. Based on these premises, this review will provide an overview of the existing current knowledge regarding the humoral control of cardiac performance in fish. The role of both classic (i.e. catecholamines, angiotensin II and natriuretic peptides), and emerging cardioactive substances (i.e. the chromogranin-A-derived peptides vasostatins, catestatin and serpinin) will be illustrated and discussed. Moreover, an example of cardiomodulation elicited by peptides (e.g., nesfatin-1) associated to the regulation of feeding and metabolism will be provided. The picture will hopefully emphasize the complex circuits that sustain fish cardiac performance, also highliting the power of the teleost heart as an experimental model to deciphering mechanisms that could be difficult to explore in more elaborated cardiac morpho-functional designs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2019.113236DOI Listing

Publication Analysis

Top Keywords

cardiac performance
12
fish cardiac
8
cardiac
5
exploring cardiac
4
cardiac plasticity
4
plasticity teleost
4
teleost role
4
role humoral
4
humoral modulation
4
fish
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!