Stroke is a major life-threatening and disabling disease with a restricted therapeutic approach. Bone marrow stromal cells (BMSCs) possess proliferative ability and a multi-directional differentiation potential, and secrete a range of trophic/growth factors that can protect neurons after cerebral ischemia/reperfusion. Transient receptor potential canonical (TRPC) is a family of non-selective channels permeable to Ca, with several functions including neuronal survival. Over-expression of TRPC6, a subtype of the TRPC family, was shown to protect neurons against cerebral ischemia/reperfusion injury. However, it remains unclear whether over-expression of TRPC6 in BMSCs can further reduce brain injury after ischemia/reperfusion. In the present study, we report that over-expression of TRPC6 via a CRISPR-based synergistic activation mediator in BMSCs provided a greater reduction of brain injury in a rat model of ischemia/reperfusion. Further, the improved neurofunctional outcomes were associated with increased TRPC6 and brain derived neurotrophic factor expression levels. Overall, these data suggest that TRPC6 over-expressing BMSCs may be a promising therapeutic agent for ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2019.06.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!