Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantitative first and second formation constants of aqueous uranyl sulfate complexes were obtained from Raman spectra of solutions in fused silica capillary cells at 25 MPa, at temperatures ranging from 25 to 375 °C. Temperature-dependent values of the symmetric O-U-O vibrational frequencies of UO(aq), UOSO(aq), and UO(SO)(aq) were determined from the high-temperature spectra. Temperature-independent Raman scattering coefficients of UO(aq) were calculated directly from uranyl triflate spectra from 25 to 300 °C, while those of UOSO(aq) and UO(SO)(aq) were derived from spectroscopic data at 25 °C and concentrations calculated using the formation constants of Tian and Rao ( 2009 , 41 , 569 - 574 ), together with the Specific Ion Interaction Theory (SIT) activity coefficient model. Chemical structures and vibrational frequencies predicted from Density Functional Theory (Gaussian 09) were employed to interpret the Raman spectra. Values of the cumulative formation constants ranged from log β = 3.23 ± 0.08 and log β = 4.22 ± 0.15 at 25 °C, to log β = 12.35 ± 0.22 and log β = 14.97 ± 0.02 at 350 °C. This is the first reported use of high-pressure fused silica capillary cells to determine formation constants of metal ligand complexes from their reduced isotropic Raman spectra under hydrothermal conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b01544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!