Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test.

Lab Chip

Department of Chemistry, Hong Kong Baptist University, Waterloo Rd, Kowloon, Hong Kong, China. and HKBU Institute of Research and Continuing Education, Shenzhen, China and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Waterloo Rd, Kow-loon, Hong Kong, China.

Published: September 2019

Using an antimicrobial susceptibility test (AST) as an example, this work demonstrates a practical method to fabricate microfluidic chips entirely from polypropylene (PP) and the benefits for potential commercial use. Primarily caused by the misuse and abuse of antibiotics, antimicrobial resistance (AMR) is a major threat to modern medicine. The AST is a promising technique to help with the optimal use of antibiotics for reducing AMR. However, current phenotypic ASTs suffer from long turnaround time, while genotypic ASTs suffer from low reliability, and both are unaffordable for routine use. New microfluidics based AST methods are rapid but still unreliable as well as costly due to the PDMS chip material. Herein, we demonstrate a convenient method to fabricate whole PP microfluidic chips with high resolution and fidelity. Unlike PDMS chips, the whole PP chips showed better reliability due to their inertness; they are solvent-compatible and can be conveniently reused and recycled, which largely decreases the cost, and are environmentally friendly. We specially designed 3D chambers that allow for quick cell loading without valving/liquid exchange; this new hydrodynamic design satisfies the shear stress requirement for on-chip bacterial culture, which, compared to reported designs for similar purposes, allows for a simpler, more rapid, and high-throughput operation. Our system allows for reliable tracking of individual cells and acquisition of AST results within 1-3 hours, which is among the group of fastest phenotypic methods. The PP chips are more reliable and affordable than PDMS chips, providing a practical solution to improve current culture-based AST and benefiting the fight against AMR through helping doctors prescribe effective, narrow-spectrum antibiotics; they will also be broadly useful for other applications wherein a reliable, solvent-resistant, anti-fouling, and affordable microfluidic chip is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00502aDOI Listing

Publication Analysis

Top Keywords

antimicrobial susceptibility
8
susceptibility test
8
method fabricate
8
fabricate microfluidic
8
microfluidic chips
8
asts suffer
8
pdms chips
8
chips
6
ast
5
reliable
4

Similar Publications

Environmental cues sometimes have a direct impact on phage particle stability, as well as bacterial physiology and metabolism, having a profound effect on phage infection outcome. Here, we explore the impact of temperature on the interplay between phage (phiIPLA-RODI) and its host, . Our results show that phiIPLA-RODI is a more effective predator at room (25 °C) compared to body temperature (37 °C) against planktonic cultures of several strains with varying degrees of phage susceptibility.

View Article and Find Full Text PDF

Single-nucleotide polymorphisms in genes associated with the vitamin D pathway related to clinical and therapeutic outcomes of American tegumentary leishmaniasis.

Front Cell Infect Microbiol

January 2025

Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.

Background: The vitamin D pathway contributes to the microbicidal activity of macrophages against infection. In addition to induction of this pathway, interferon-gamma (IFNγ), interleukin (IL)-15, and IL32γ are part of a network of pro-inflammatory cytokines. The aim of this study was to evaluate single-nucleotide polymorphisms (SNPs) in the components of the vitamin D pathway and associated cytokine genes that could be related to resistance or susceptibility to American tegumentary leishmaniasis (ATL).

View Article and Find Full Text PDF

Background And Objective: Antimicrobial resistance (AMR) is a global crisis, however, relatively little is known regarding its impact in chronic respiratory disease and the specific challenges faced by healthcare workers across the world in this field. We aimed to assess global healthcare worker views on the challenges they face regarding AMR in chronic respiratory disease.

Methods: An online survey was sent to healthcare workers globally working in chronic respiratory disease through a European Respiratory Society clinical research collaboration (AMR-Lung) focussed on AMR in chronic lung disease.

View Article and Find Full Text PDF

Background: Congenital malaria remains a significant public health challenge in Nigeria, particularly in regions with high malaria endemicity. The increased vertical transmission of malaria is partly associated with the high susceptibility of women to malaria during pregnancy. This systematic review aimed to assess the prevalence, characteristics, and treatment outcomes of congenital malaria in Nigeria.

View Article and Find Full Text PDF

Clinical and Mycobacterium tuberculosis strain characteristics of tuberculosis patients with diabetes mellitus in Changping District, Beijing, China.

BMC Infect Dis

January 2025

Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China.

Background: Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB), However, limited research exists on their clinical and strain characteristics. This study aims to investigate the correlation between these factors in TB-DM patients in Changping District.  METHODS: Whole genome sequencing (WGS) and drug susceptibility tests (DST) were performed on culture-positive strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!