We present a bidirectional recirculating frequency-shifting loop, seeded by a continuous-wave (cw) laser, to perform multi-heterodyne interferometry. This fiber-optic system generates two counter-propagating "acousto-optic" frequency combs with a controllable line spacing. Apart from its simple architecture, coherent averaging allows us to reach acquisition times up to the second scale without resorting to any active stabilization mechanism. We also show that the relative phase between the combs is quadratic and can be easily controlled by adjusting the parameters of the loop. The capability of our scheme to perform molecular spectroscopy is proven by dual-comb measurements of a transition of hydrogen cyanide in the near-infrared region (1550 nm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.003789 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!