We demonstrate that a background-free readout of two-photon fluorescence from nitrogen-vacancy (NV) centers in a strongly fluorescing environment can be accomplished by all-optical means via a multiphoton charge-state modulation of NV centers in a mixture of negatively charged and neutral NV centers. A 100 fs, 1060 nm output of an ytterbium fiber laser is ideally suited for this modality of multiphoton microscopy, providing, as our experiments show, an efficient two-photon excitation of both NV and NV charge states, but keeping the nonlinearity of n-photon ionization needed for NV/NV charge-state modulation to a minimum, n=3.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.44.003737DOI Listing

Publication Analysis

Top Keywords

charge-state modulation
12
two-photon fluorescence
8
nitrogen-vacancy centers
8
background-free two-photon
4
fluorescence readout
4
readout three-photon
4
three-photon charge-state
4
modulation nitrogen-vacancy
4
centers
4
centers diamond
4

Similar Publications

Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (/) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes.

View Article and Find Full Text PDF

Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via relaxation time of nitrogen-vacancy (NV) centers and EC signals.

View Article and Find Full Text PDF

Self-assembled InAs quantum dots (QDs) are promising optomechanical elements due to their excellent photonic properties and sensitivity to local strain fields. Microwave-frequency modulation of photons scattered from these efficient quantum emitters has been recently demonstrated using surface acoustic wave (SAW) cavities. However, for optimal performance, a gate structure is required to deterministically control the charge state and reduce the charge noise of the QDs.

View Article and Find Full Text PDF

Graphite-Based Bio-Mimetic Nanopores for Protein Sequencing and Beyond.

Small

January 2025

Computational Biotechnology, RWTH Aachen University, Worrignerweg 3, 52074, Aachen, Germany.

Protein sequencing using nanopores represents the next frontier in bio-analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid-state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a biomimetic graphite-based nanopore construction.

View Article and Find Full Text PDF

High-Valence Metals Accelerate the Reaction Kinetics for Boosting Water Oxidation.

Small

October 2024

Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China.

The transition metal with high valence state in oxyhydroxides can accelerate the reaction kinetics, enabling highly intrinsic OER activity. However, the formation of high-valence transition-metal ions is thermodynamically unfavorable in most cases. Here, a novel strategy is proposed to realize the purpose and reveal the mechanism by constructing amorphous phase and incorporating of elements with the characteristic of Lewis acid or variable charge state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!