Rotational shot put: a phase analysis of current kinematic knowledge.

Sports Biomech

Faculty of Health, Sport and Human Performance, University of Waikato, Tauranga, New Zealand.

Published: March 2022

AI Article Synopsis

  • This review focuses on how biomechanics can improve coaching for shot put performance, particularly through the rotational technique.
  • Key findings highlight the importance of angular momentum and the timing of specific movements, such as the sweep leg and arm actions, which impact performance and release velocity.
  • Coaches are encouraged to consider the interdependence of kinematics and kinetics across all phases of the throw to optimize athlete performance and recommend further research into energy transfer for deeper insights.

Article Abstract

The biomechanics of the rotational shot put is used to direct coaching to enhance throwing performance. Maximising shot put distance and velocity at the point of release through increasing momentum is of interest to coaches. This narrative review aimed to examine and summarise the critical kinematic variables within each of the six phases of rotational shot put associated with performance and release velocity. Databases were searched using 'shot put', 'biomechanics' and 'track and field throwing', from which 20 articles based on the inclusion criteria were reviewed. The results indicate that the magnitude of transverse thrower-shot angular momentum and thrower-shots path of translation are crucial to performance. In achieving high angular momentum, sweep leg and arm actions need to be well-timed, and their timings and movement likely determine key biomechanical events such as hip to shoulder separations. Generating high release velocities stems from the development and transference of momentum through each phase. Kinematics and kinetics within each phase are co-dependent within and across each phase; therefore, coaches should consider the biomechanics of an athlete through preceding phases when seeking biomechanical change within a given phase. Further research and consideration of kinetics and energy transfer would add value to kinematic observations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2019.1636130DOI Listing

Publication Analysis

Top Keywords

rotational shot
12
angular momentum
8
phase
5
shot phase
4
phase analysis
4
analysis current
4
current kinematic
4
kinematic knowledge
4
knowledge biomechanics
4
biomechanics rotational
4

Similar Publications

Background: Musculoskeletal adaptations are common in overhead athletes. As they also are involved in injury prevention, there has been an increase in their evaluation through shoulder screening over the last years. However, for some evaluations, and especially for functional testing, there is a lack of normative values, which limits the interpretation of the values measured.

View Article and Find Full Text PDF

Follicle count, a pivotal metric in the adjunct diagnosis of polycystic ovary syndrome (PCOS), is often underestimated when assessed via transvaginal ultrasonography compared to MRI. Nevertheless, the repeatability of follicle counting using traditional MR images is still compromised by motion artifacts or inadequate spatial resolution. In this prospective study involving 22 PCOS patients, we employed periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and single-shot fast spin-echo (SSFSE) T2-weighted sequences to suppress motion artifacts in high-resolution ovarian MRI.

View Article and Find Full Text PDF

A zero-shot attribute-embedded model with a feature difference mapping sigmoid function for compound fault diagnosis of rotating machinery.

ISA Trans

December 2024

State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, PR China. Electronic address:

Article Synopsis
  • Current methods for detecting machinery compound faults struggle due to the lack of available training data, as collecting sufficient compound fault samples is often impractical in engineering.
  • The paper introduces a zero-shot attribute-embedded model (ZSAECFD), which allows for diagnosing unseen compound faults using only single fault data by constructing attribute prototypes and utilizing a new activation function, F-sigmoid.
  • The model demonstrates high diagnostic accuracy—81.82% for bearing faults and 88.17% for gear faults—showing its effectiveness compared to traditional methods, even without training on compound fault data.
View Article and Find Full Text PDF

Single-molecule orientation-localization microscopy: Applications and approaches.

Q Rev Biophys

December 2024

Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA.

Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise.

View Article and Find Full Text PDF

Background: When antispasmodics are unavailable, the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER; called BLADE by Siemens Healthineers) or half Fourier single-shot turbo spin echo (HASTE) is clinically used in gynecologic MRI. However, their imaging qualities are limited compared to Turbo Spin Echo (TSE) with antispasmodics. Even with antispasmodics, TSE can be artifact-affected, necessitating a rapid backup sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!