A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial bioconversion of thermally depolymerized polypropylene by Yarrowia lipolytica for fatty acid production. | LitMetric

Plastic production and waste generation will continue to rise as nations worldwide grow economically. In this work, we detail a pyrolysis-based bioconversion process for polypropylene (PP) to produce value-added fatty acids (FAs). PP pellets were depolymerized by pyrolysis, generating oil that consisted of mainly branched chain fatty alcohols and alkenes. The oil was mixed with biodegradable surfactants and trace nutrients and mechanically homogenized. The resulting medium, OP4, was used for fermentation by Yarrowia lipolytica strain 78-003. Y. lipolytica assimilated > 80% of the substrate over 312 h, including 86% of the fatty alcohols. Y. lipolytica produced up to 492 mg L lipids, compared with 216 mg L during growth in surfactant-based control medium. C 18 compounds, including oleic acid, linoleic acid, and stearic acid, were the predominant products, followed by C 16 compounds palmitic and palmitoleic acids. Two percent of the products was C 20 compounds. The majority of the products were unsaturated FAs. Growth on hydrophobic substrates (OP4 medium, hexadecane) was compared with growth on hydrophilic substrates (glucose, starch). The resulting FA profiles revealed an absence of short-chain fatty acids during growth on hydrophobic media, findings consistent with ex novo FA biosynthesis. Overall, FA profiles by Y. lipolytica during growth in OP4 medium were similar to FA profiles while growing on natural substrates. The process described here offers an alternative approach to managing postconsumer plastic waste.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-09999-2DOI Listing

Publication Analysis

Top Keywords

yarrowia lipolytica
8
fatty acids
8
fatty alcohols
8
products compounds
8
growth hydrophobic
8
op4 medium
8
lipolytica
5
fatty
5
growth
5
microbial bioconversion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!