Single-molecule junctions are ideal test beds for investigating the fundamentals of charge transport at the nanoscale. Conducting properties are strongly dependent on the metal-molecule interface geometry, which, however, is very poorly characterized due to numerous experimental challenges. We report on a new methodology for characterizing the adsorption site of single-molecule junctions through the combination of surface enhanced Raman scattering (SERS), current-voltage (-) curve measurements, and density functional theory simulations. This new methodology discriminates between three different adsorption sites for benzenedithiol and aminobenzenethiol junctions, which cannot be identified by solo measurements of either SERS or - curves. Using this methodology, we determine the interface geometry of these two prototypical molecules at the junction and its time evolution. By modulating the applied voltage, we can change and monitor the distribution of adsorption sites at the junction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615215PMC
http://dx.doi.org/10.1039/c9sc00701fDOI Listing

Publication Analysis

Top Keywords

adsorption site
8
single-molecule junctions
8
interface geometry
8
adsorption sites
8
identifying molecular
4
adsorption
4
molecular adsorption
4
site single
4
single molecule
4
molecule junction
4

Similar Publications

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Sustained Tl(I) removal by α-MnO: Dual role of tunnel structure incorporation and surface catalytic oxidation.

J Hazard Mater

January 2025

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.

Article Synopsis
  • Manganese oxide-based filtration is an effective, cost-efficient method for removing thallium from engineered systems, although there are gaps in understanding its long-term effectiveness.
  • α-MnO demonstrated a high potential for thallium removal, showing a significant increase in irreversible removal rates (81%-95%) over a 584-hour period under various conditions.
  • The study reveals critical mechanisms, such as the oxidation of thallium, driven by surface Mn(III)-O interactions, highlighting how different environmental factors influence thallium binding and removal effectiveness in manganese oxide systems.
View Article and Find Full Text PDF

Designing cellulose based biochars for CO separation using molecular simulations.

Sci Rep

January 2025

Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

This study investigates the pyrolysis mechanism of cellulose using reactive molecular dynamics simulations to prepare biochars for CO separation applications. Six biochars with densities ranging from 0.160 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!