Background: The purpose of this study was to evaluate the effect of surface treatment of fiber-reinforce post and metal post of adhesion of a resin luting cement.
Materials And Methods: Sixty methyl methacrylate specimens were fabricated with a customized metal rod. The samples were segregated into six groups (F1, F2, F3, M1, M2, and M3) of 10 specimens ( = 10) each. The first three groups (F1, F2, and F3) were for fiber posts and (M1, M2, and M3) were for metal posts. The postspace preparation was done with dedicated drills supplied by the postmanufacturers to a length of 14 mm. F1 and M1 were the control groups. The posts in F2 and M2 groups were treated with airborne-particle abrasion with 70 μm AlO particles for 5 s at a constant distance of 20 mm, cleaned with alcohol and cemented in the postspace. The posts in the F3 and M3 groups were treated with airborne-particle abrasion followed by primer application. After cementing the posts into the postspace, the acrylic blocks were sectioned with a motor-driven jigsaw to obtain four specimens each of 3-mm thickness. These sections were then subjected to push-out tests on a universal testing machine.
Results: There was a statistically significant increase in the bond strength of both fiber and metal posts to resin cement after airborne-particle abrasion with AlO particles and airborne abrasion followed by primer application.
Conclusion: There is an increase in the bond strength of the resin cement with the prefabricated posts after the various surface treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632624 | PMC |
http://dx.doi.org/10.4103/JCD.JCD_402_18 | DOI Listing |
Nat Commun
January 2025
School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, and Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.
The realization of room-temperature-operated, high-performance, miniaturized, low-power-consumption and Complementary Metal-Oxide-Semiconductor (CMOS)-compatible mid-infrared photodetectors is highly desirable for next-generation optoelectronic applications, but has thus far remained an outstanding challenge using conventional materials. Two-dimensional (2D) heterostructures provide an alternative path toward this goal, yet despite continued efforts, their performance has not matched that of low-temperature HgCdTe photodetectors. Here, we push the detectivity and response speed of a 2D heterostructure-based mid-infrared photodetector to be comparable to, and even superior to, commercial cooled HgCdTe photodetectors by utilizing a vertical transport channel (graphene/black phosphorus/molybdenum disulfide/graphene).
View Article and Find Full Text PDFJ Prosthodont
January 2025
Department of Restorative Dental Science, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia.
Purpose: To investigate how varying ferrule heights and the number of glass fiber posts affect fracture resistance and behavior of endodontically treated maxillary first premolars with substantial loss of tooth structure.
Materials And Methods: Twenty-four extracted endodontically treated human maxillary first premolars were divided into three groups (n = 8) based on ferrule height and post number. The groups were as follows: premolars of 2 mm ferrule height that were restored with single posts (control group), premolars of 0.
Sci Rep
January 2025
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an, 710071, China.
(AlO)(HfO) films with varying compositions were deposited on silicon substrates via plasma-enhanced atomic layer deposition (PEALD), and metal-oxide-semiconductor (MOS) capacitors were fabricated. The impact of varying induced Al content on the dielectric properties of HfO was examined through electrical measurements. The results showed that increasing Al content raised the flat-band voltage, reduced the interface state density (D), and significantly lowered the leakage current at a given voltage.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
The Mpox virus (MPXV) has emerged as a formidable orthopoxvirus, posing an immense challenge to global public health. An understanding of the regulatory mechanisms of MPXV infection, replication and immune evasion will benefit the development of novel antiviral strategies. Despite the involvement of G-quadruplexes (G4s) in modulating the infection and replication processes of multiple viruses, their roles in the MPXV life cycle remain largely unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!