We present the results of an analysis of the 16S rRNA-based taxonomical structure of bacteria together with an analysis of carbon source utilization ability using EcoPlate (Biolog, USA) metabolic fingerprinting assessment against the backdrop of physicochemical parameters in fifteen interconnected lakes. The lakes exhibit a wide spectrum of trophic gradients and undergo different intensities of anthropopressure. Sequences of V3-V4 16S rRNA genes binned by taxonomic assignment to family indicated that bacterial communities in the highly eutrophicated lakes were distinctly different from the bacterial communities in the meso-eutrophic lakes (ANOSIM r = 0.99, p = 0.0002) and were characterized by higher richness and more diverse taxonomical structure. Representatives of the Actinobacteria, Proteobacteria, Cyanobacteria, Planctomycetes, Verrucomicrobia, Bacteroides phyla predominated. In most cases their relative abundance was significantly correlated with lake trophic state. We found no similar clear relationship of community-level physiological profiling with lake trophic state. However, we found some significant links between the taxonomic and metabolic structure of the microbes in the studied lakes (Mantel's correlation r = 0.22, p = 0.006). The carbon source utilization ability of the studied microorganisms was affected not only by the taxonomic groups present in the lakes but also by various characteristics like a high PO concentration inhibiting the utilization of phosphorylated carbon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668414PMC
http://dx.doi.org/10.1038/s41598-019-47577-8DOI Listing

Publication Analysis

Top Keywords

interconnected lakes
8
taxonomical structure
8
carbon source
8
source utilization
8
utilization ability
8
bacterial communities
8
lake trophic
8
trophic state
8
lakes
7
structural functional
4

Similar Publications

Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.

View Article and Find Full Text PDF

Volumetric measurement of manually drawn segmentations in cone beam computed tomography images of newly formed bone after sinus floor augmentation with bovine-derived bone substitutes.

J Stomatol Oral Maxillofac Surg

January 2025

Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria; Clinical Application of Artificial Intelligence in Dentistry (CAAID) Group, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria. Electronic address:

Precise volumetric measurement of newly formed bone after maxillary sinus floor augmentation (MSFA) can help clinicians in planning for dental implants. This study aimed to introduce a novel modular framework to facilitate volumetric calculations based on manually drawn segmentations of user-defined areas of interest on cone-beam computed tomography (CBCT) images MATERIAL & METHODS: Two interconnected networks for manual segmentation of a defined volume of interest and dental implant volume calculation, respectively, were used in parallel. The volume data of dental implant manufacturers were used for reference.

View Article and Find Full Text PDF

Background: Ethnobotanical knowledge about plant roles in fisheries is crucial for sustainable resource management. Local ecological knowledge helps understand dynamics of the lake ecosystem. Fishers use plants based on availability and characteristics while adapting to the changes in the environment.

View Article and Find Full Text PDF

Selective Pressure Influences Inter-Biome Dispersal in the Assembly of Saline Microbial Communities.

Environ Microbiol

December 2024

Ecology of the Global Microbiome-Department of Ecology and Complexity, Centre of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Catalonia, Spain.

Selection and dispersal are the primary processes influencing community assembly at both global and regional scales. Although the effectiveness of dispersal is often examined within the same biome, microscopic organisms demonstrate the capability to colonise and thrive across different biomes. In this study, we evaluated the relationship between (i) aquatic, (ii) sedimentary and (iii) aerial microbial communities, and how local selective pressures influence the potential impact of inter-biome dispersal, focusing on the salinity gradient stress over time in ephemeral saline lakes.

View Article and Find Full Text PDF

Lake Sentani is a tropical lake in Indonesia, consisting of four interconnected sub-basins of different water depths. While previous work has highlighted the impact of catchment composition on biogeochemical processes in Lake Sentani, little is currently known about the microbiological characteristics across this unique ecosystem. With recent population growth in this historically rural area, the anthropogenic impact on Lake Sentani and hence its microbial life is also increasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!