The activities and gene expression of antioxidative enzymes and the ROS content were analyzed in two typical storage-tolerant cultivars (Xushu 32 and Shangshu 19) and another two storage-sensitive cultivars (Yanshu 25 and Sushu 16) to explore the association between the storage capacity of sweetpotato (Ipomoea batatas (L.) Lam) and ROS scavenging capability. The storage roots of the storage-tolerant cultivars maintained higher activities and expression levels of antioxidative enzymes, including ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD); lower activity and expression of lipoxygenase (LOX); and lower accumulation of ROS metabolites compared with the storage-sensitive cultivars. The antioxidative capability and ROS parameters of leaves were positively correlated with those of storage roots. Our results provide valuable insight for evaluating the storability of sweetpotato cultivars by analyzing the capabilities of the antioxidative system and the contents of ROS metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668466PMC
http://dx.doi.org/10.1038/s41598-019-47604-8DOI Listing

Publication Analysis

Top Keywords

sweetpotato cultivars
8
antioxidative enzymes
8
storage-tolerant cultivars
8
storage-sensitive cultivars
8
storage roots
8
ros metabolites
8
cultivars
6
antioxidative
5
ros
5
antioxidative capacity
4

Similar Publications

Influence of Sweetpotato Resistance on the Development of and .

Phytopathology

January 2025

LSU AgCenter, 302 Life Science Building, Baton Rouge, Louisiana, United States, 70803;

and are major pests of sweetpotato. The ability of to cause symptoms and reproduce on nematode-resistant cultivars threatens the sweetpotato industry. To evaluate the penetration, development, and reproduction of and on sweetpotato, a time-course study was conducted using the genotypes 'LA14-31' (resistant to and intermediate-resistant to ), 'LA18-100' (susceptible to and resistant to ), and 'LA19-65' (resistant to and susceptible to ), with 'Beauregard' (susceptible to both species) and 'Jewel' (resistant to and intermediate-resistant to ) as controls.

View Article and Find Full Text PDF

Flooding stress poses a significant challenge to soybean cultivation, impacting plant growth, development, and ultimately yield. In this study, we investigated the responses of two distinct soybean cultivars: flooding-tolerant Nanxiadou 38 (ND38) and flooding-sensitive Nanxiadou 45 (ND45). To achieve this, healthy seedlings were cultivated with the water surface consistently maintained at 5 cm above the soil surface.

View Article and Find Full Text PDF

Over the last several years, foot rot caused by has become the most destructive sweetpotato disease in the southernmost region of Japan. Breeding of cultivars resistant to foot rot is required for effective and low-cost management. Field tests are often used to evaluate resistance of cultivars, but this approach has several limitations, including a long test period of several months and the requirement of field isolation and labor-intensive procedures.

View Article and Find Full Text PDF

Comparative analyses of RNA-seq and phytohormone data of sweetpotatoes inoculated with Dickeya dadantii causing bacterial stem and root rot of sweetpotato.

BMC Plant Biol

November 2024

Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China.

Article Synopsis
  • Bacterial stem and root rot (BSRR) in sweetpotato, caused by Dickeya dadantii, is a major threat in China, with the study identifying Guangshu87 (GS87) as resistant and Xinxiang (XX) as susceptible.
  • RNA sequencing revealed significant differences in gene expression between the two cultivars, with GS87 showing enhanced regulation of resistance-related genes after infection.
  • The study highlighted the roles of phytohormones, reactive oxygen species, and specific hub genes in the resistance mechanisms of GS87 against D. dadantii, providing insights into potential targets for genetic improvement.
View Article and Find Full Text PDF

Genome-wide analysis of the HSF family in Allium sativum L. and AsHSFB1 overexpression in Arabidopsis under heat stress.

BMC Genomics

November 2024

Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China.

Article Synopsis
  • The heat shock transcription factor (HSF) family in plants is key for responding to stressors like heat, salt, and drought, and researchers identified 22 HSFs in garlic using transcriptome data.
  • Through bioinformatics, three subfamilies of HSFs were characterized, and RT-qPCR revealed varying responses of nine selected genes to heat stress.
  • The isolated HSF gene AsHSFB1, when overexpressed in Arabidopsis thaliana, led to poorer stress resistance compared to wild-type plants, indicating its potential negative regulatory role in garlic’s response to high stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!