The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. At the cell wall level, enzyme activities are involved in postsynthesis polysaccharide modifications such as cleavage, elongation, branching, and cross-linking. Glycosylphosphatidylinositol (GPI)-anchored proteins have been shown to participate in cell wall biosynthesis and specifically in polysaccharide remodeling. Among these proteins, the DFG family plays an essential role in controlling polar growth in yeast. In the filamentous fungus and opportunistic human pathogen , the gene family contains seven orthologous genes among which only six are expressed under growth conditions. Deletions of single genes revealed that plays the most important morphogenetic role in this gene family. A sextuple-deletion mutant resulting from the deletion of all expressed genes did not contain galactomannan in the cell wall and has severe growth defects. This study has shown that DFG members are absolutely necessary for the insertion of galactomannan into the cell wall of and that the proper cell wall localization of the galactomannan is essential for correct fungal morphogenesis in The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. Enzymes involved in postsynthesis polysaccharide modifications, such as cleavage, elongation, branching, and cross-linking, are essential for fungal life. Here, we investigated in the role of the members of the Dfg family, one of the 4 GPI-anchored protein families common to yeast and molds involved in cell wall remodeling. Molecular and biochemical approaches showed that DFG members are required for filamentous growth, conidiation, and cell wall organization and are essential for the life of this fungal pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669337 | PMC |
http://dx.doi.org/10.1128/mSphere.00397-19 | DOI Listing |
Mol Breed
January 2025
Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.
Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.
View Article and Find Full Text PDFNagoya J Med Sci
November 2024
Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Peribronchiolar metaplasia is an uncommon lesion characterized by fibrosis and bronchiolar epithelial cell proliferation along the peribronchiolar alveolar walls, primarily in response to bronchiolar and peribronchiolar injuries. Peribronchiolar metaplasia usually appears as ground glass nodules or sub-solid nodules on computed tomography. However, we present an exceptional case of peribronchiolar metaplasia that appeared as a solitary solid nodule on computed tomography.
View Article and Find Full Text PDFNat Med
January 2025
Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.
View Article and Find Full Text PDFSci Rep
January 2025
School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.
View Article and Find Full Text PDFSci Rep
January 2025
Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!