Identification of a novel long non-coding RNA within RUNX1 intron 5.

Hum Genomics

Laboratory of Epigenetics [EpiGene], Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile.

Published: July 2019

Background: RUNX1 gene, a master regulator of the hematopoietic process, participates in pathological conditions as a partner for several genes in chromosomal translocations. One of the most frequent chromosomal translocations found in acute myeloid leukemia patients is the t(8;21), in which RUNX1 and ETO genes recombine. In RUNX1 gene, the DNA double-strand breaks that originate the t(8;21) are generated in the intron 5, specifically within three regions designated as BCR1, BCR2, and BCR3. To date, what determines that these regions are more susceptible to DNA double-strand breaks is not completely clear. In this report, we characterized RUNX1 intron 5, by analyzing DNase-seq and ChIP-seq data, available in the ENCODE Project server, to evaluate DNaseI hypersensitivity and the presence of the epigenetic mark H3K4me3 in 124 and 51 cell types, respectively.

Results: Our results show that intron 5 exhibits an epigenetic mark distribution similar to known promoter regions. Moreover, using the online tool YAPP and available CAGE data from the ENCODE Project server, we identified several putative transcription start sites within intron 5 in regions BCR2 and BCR3. Finally, available EST data was analyzed, identifying a novel uncharacterized long non-coding RNA, which is expressed in hematopoietic cell lines as shown by RT-PCR. Our data suggests that the core promoter of the novel long non-coding RNA locates within the region BCR3.

Conclusion: We identified a novel long non-coding RNA within RUNX1 intron 5, transcribed from a promoter located in the region BCR3, one of the chromosomal breakpoints of RUNX1 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670153PMC
http://dx.doi.org/10.1186/s40246-019-0219-1DOI Listing

Publication Analysis

Top Keywords

long non-coding
16
non-coding rna
16
novel long
12
runx1 intron
12
runx1 gene
12
rna runx1
8
chromosomal translocations
8
dna double-strand
8
double-strand breaks
8
bcr2 bcr3
8

Similar Publications

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Long non-coding RNA TMC3-AS1 is identified to be upregulated by lipopolysaccharide (LPS) in inflammatory disease, but its role in acute kidney injury (AKI) is almost unknown. The study investigated the involvement of TMC3-AS1 in LPS-induced AKI and its downstream molecular regulatory mechanism. Our data suggested that knocking down TMC3-AS1 significantly reduced renal dysfunction, tissue inflammation and tissue damage in LPS-induced mice, and promoted cell viability, inhibited inflammation, apoptosis and necrosis in LPS-stimulated human renal tubular epithelial cells HK2.

View Article and Find Full Text PDF

Advances in A-to-I RNA editing in cancer.

Mol Cancer

December 2024

NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.

RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!