Rationale: The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1).

Objective: Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function.

Methods And Results: We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function.

Conclusions: Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715539PMC
http://dx.doi.org/10.1161/CIRCRESAHA.119.315313DOI Listing

Publication Analysis

Top Keywords

hand1 enhancer
16
transcription factor
12
conduction system
12
hand1
9
enhancer
9
gata transcription
8
development function
8
nucleotide polymorphisms
8
rs13165478 rs13185595
8
vcs development
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!