Objective: Hyperhomocysteinemia (HHcy) is a potent risk factor for diabetic cardiovascular diseases. We have previously reported that hyperhomocysteinemia potentiates type 1 diabetes mellitus-induced inflammatory monocyte differentiation, vascular dysfunction, and atherosclerosis. However, the effects of hyperhomocysteinemia on vascular inflammation in type 2 diabetes mellitus (T2DM) and the underlying mechanism are unknown. Approach and Results: Here, we demonstrate that hyperhomocysteinemia was induced by a high methionine diet in control mice (homocysteine 129 µmol/L), which was further worsened in T2DM db/db mice (homocysteine 180 µmol/L) with aggravated insulin intolerance. Hyperhomocysteinemia potentiated T2DM-induced mononuclear cell, monocyte, inflammatory monocyte (CD11bLy6C), and M1 macrophage differentiation in periphery and aorta, which were rescued by folic acid-based homocysteine-lowering therapy. Moreover, hyperhomocysteinemia exacerbated T2DM-impaired endothelial-dependent aortic relaxation to acetylcholine. Finally, transfusion of bone marrow cells depleted for Ly6C by shRNA transduction improved insulin intolerance and endothelial-dependent aortic relaxation in hyperhomocysteinemia+T2DM mice.
Conclusions: Hyperhomocysteinemia potentiated systemic and vessel wall inflammation and vascular dysfunction partially via inflammatory monocyte subset induction in T2DM. Inflammatory monocyte may be a novel therapeutic target for insulin resistance, inflammation, and cardiovascular complications in hyperhomocysteinemia+T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761027 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.119.313138 | DOI Listing |
Viruses
November 2024
Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
Monocytes are crucial players in innate immunity. The human cytomegalovirus (CMV) infection has significant impacts on monocyte effector functions and gene expression. CMV, a β-herpesvirus, disrupts key monocyte roles, including phagocytosis, antigen presentation, cytokine production, and migration, impairing their ability to combat pathogens and activate adaptive immune responses.
View Article and Find Full Text PDFViruses
November 2024
Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy.
The mechanisms of the innate immunity control of equine infectious anemia virus in horses are not yet widely described. Equine monocytes isolated from the peripheral blood of three Equine infectious anemia (EIA) seronegative horses were differentiated in vitro into macrophages that gave rise to mixed cell populations morphologically referable to M1 and M2 phenotypes. The addition of two equine recombinant cytokines and two EIA virus reference strains, Miami and Wyoming, induced a more specific cell differentiation, and as for other species, IFNγ and IL4 stimulation polarized horse macrophages respectively towards the M1 and the M2 phenotypes.
View Article and Find Full Text PDFMolecules
December 2024
Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
Moringa leaves provide numerous health benefits due to their anti-inflammatory properties. This study presents the first evidence that endothelial cell inflammation can potentially be ameliorated by moringa leaf extract. Here, we established an experimental human blood vessel cell model of inflammation using EA.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Cardiac Surgery, University Hospital, Department of Surgery, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
The systemic inflammatory response after cardiopulmonary bypass has been widely studied. However, there is a paucity of studies that focus on the local inflammatory changes that occur in the pericardial cavity. The purpose of this study is to assess the inflammatory mediators in the pericardial fluid of patients undergoing cardiac surgery.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
Severe lower respiratory tract disease following influenza A virus (IAV) infection is characterized by excessive inflammation and lung tissue damage, and this can impair lung function. The effect of toll-like receptor 7 (TLR7), which detects viral RNA to initiate antiviral and proinflammatory responses to IAV, on lung function during peak infection and in the resolution phase is not fully understood. Using wild-type (WT) C57BL/6 and TLR7 knockout (TLR7 KO) mice, we found that IAV infection induced airway dysfunction in both genotypes, although in TLR7 KO mice, this dysfunction manifested later, did not affect lung tissue elastance and damping, and was associated with a different immune phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!