The identification and characterization of fungal commensals of the human gut (the mycobiota) is ongoing, and the effects of their various secondary metabolites on the health and disease of the host is a matter of current research. While the neurons of the central nervous system might be affected indirectly by compounds from gut microorganisms, the largest peripheral neuronal network (the enteric nervous system) is located within the gut and is exposed directly to such metabolites. We analyzed 320 fungal extracts and their effect on the viability of a human neuronal cell line (SH-SY5Y), as well as their effects on the viability and functionality of the most effective compound on primary enteric neurons of murine origin. An extract from was identified to decrease viability with an EC of 0.23 ng/µL in SH-SY5Y cells and an EC of 1 ng/µL in enteric neurons. Further spectral analysis revealed that the effective compound was patulin, and that this polyketide lactone is not only capable of evoking ROS production in SH-SY5Y cells, but also diverse functional disabilities in primary enteric neurons such as altered calcium signaling. As patulin can be found as a common contaminant on fruit and vegetables and causes intestinal injury, deciphering its specific impact on enteric neurons might help in the elaboration of preventive strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696395PMC
http://dx.doi.org/10.3390/molecules24152776DOI Listing

Publication Analysis

Top Keywords

enteric neurons
20
nervous system
8
effective compound
8
primary enteric
8
sh-sy5y cells
8
enteric
6
neurons
6
identification patulin
4
patulin toxin
4
toxin enteric
4

Similar Publications

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

Gut Neuropathies and Intestinal Motility Disorders.

Neurogastroenterol Motil

January 2025

College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.

Background: The enteric nervous system plays a key role in the coordination of gastrointestinal motility together with sympathetic, parasympathetic, and extrinsic sensory pathways. In some cases, abnormalities in neural activity in these pathways contribute to disorders of gut motility. Where this is associated with damage or death of enteric neurons, usually detected by microscopy, this is considered a gut neuropathy.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain.

View Article and Find Full Text PDF

The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!