We identify changes in the functional composition of vascular epiphytes along a tropical elevational gradient with the aim of quantifying the role of climate in determining the assembly of epiphyte communities. We measured seven leaf functional traits (leaf area, specific leaf area, leaf dry-matter content, leaf thickness, force to punch, stomatal density, and potential conductance index) in the 163 most abundant epiphyte species recorded across 10 sites located along an elevational gradient between 60 and 2,900 m above sea level in the Colombian Andes. We grouped the epiphyte species into seven hierarchical functional groups according to their most characteristic leaf traits. Along the elevational gradient, the two main independent leaf trait dimensions that distinguished community assemblages were defined primarily by leaf area-photosynthetic (LAPS) and mass-carbon (LMCS) gradients. Mean annual temperature was the main determinant of species position along LAPS. In contrast, local changes in specific leaf area due to variation in the epiphytes' relative height of attachment was the main determinant of their position along the LMCS. Our findings indicate that epiphytic plant leaves have evolved to optimize and enhance photosynthesis through a leaf area-based strategy and carbon acquisition through investments in construction costs of leaf area per unit of biomass that aim to regulate light capture and tissue development. Given that most studies of plant functional traits neglect vascular epiphytes, our quantification of the multiple dimensions of epiphyte leaf traits greatly augments our understanding of vascular plant function and adaptation to changing environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.2858 | DOI Listing |
J Chem Ecol
January 2025
Canterbury Research Centre, The New Zealand Institute for Plant and Food Research Limited, Lincoln, 8152, New Zealand.
The identification of sex pheromones in native New Zealand moths has been limited, largely due to their minimal pest impact on agricultural ecosystems. The kōwhai moth, Uresiphita polygonalis maorialis, a native crambid, is known for its herbivory on Sophora spp. and Lupinus arboreus leaves.
View Article and Find Full Text PDFJ Environ Sci Health B
January 2025
AGREXIS AG, Basel, Switzerland.
Pesticide dislodgeable foliar residues (DFR) and their dissipation half-time (DT) after application are important parameters for exposure and risk assessment from intended reentry activities or unintended dermal contact with treated crops. To understand the impact of agronomic factors on residue level a statistical based evaluation was conducted using ten DFR studies, with pyrimethanil applied in Scala to strawberries, raspberries, peppers, apples, and grapes, 30 trials in total. Influences on initial DFR (DFR0) and DT were investigated by multivariate linear regression analysis.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFFront Genet
January 2025
Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.
Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Volumetric modulated arc therapy (VMAT) is a popular radiotherapy technique in the clinic. As consisting of hundreds of control points in a VMAT plan it is more complex and time consuming than those conventional treatment modalities, such as intensity modulated radiation therapy. To improve the efficiency and accuracy of its quality assurance procedure, a novel automated anomaly detection method was proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!