Biochar is widely used as a soil amendment to increase crop yields. However, the impact of the interaction between the biochar and microbial inoculants (e.g., biofertilizer) on plant nutrient uptake and yield in forage rice is not fully understood. A greenhouse study was conducted to evaluate the synergistic effects of rice-husk biochar and Bacillus pumilus strain TUAT-1 biofertilizer application on growth, yield, and nutrient uptake in two forage rice genotypes; Fukuhibiki and the newly bred line, LTAT-29. Positive effects of biochar and biofertilizer, alone or in a combination, on growth traits, nutrient uptake, and yield components were dependent on the rice genotypes. Biochar and TUAT-1 biofertilizer influenced the overall growth of plants positively and increased straw and above-ground biomass in both genotypes. However, although biochar application significantly increased grain yield in LTAT-29, this was not the case in Fukuhibiki. Biochar and TUAT-1 biofertilizer, either alone or combined, significantly affected plant nutrient uptake but the effect largely depended on rice genotype. Results of this study indicate that biochar amendment and TUAT-1 biofertilizer can enhance forage rice productivity depending on genotypes, and therefore, there is a need to consider plant genetic composition when evaluating the potential for crop response to these soil amendments before application on a commercial scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668810PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220236PLOS

Publication Analysis

Top Keywords

nutrient uptake
20
forage rice
16
tuat-1 biofertilizer
16
rice genotypes
12
genotypes biochar
12
biochar
9
rice-husk biochar
8
biochar bacillus
8
bacillus pumilus
8
pumilus strain
8

Similar Publications

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

The existence of trait coordination in roots and leaves has recently been debated, with studies reaching opposing conclusions. Here, we assessed trait coordination across twelve boreal tree species. We show that there is only partial evidence for above-belowground coordination for "fast-slow" economic traits across boreal tree species, i.

View Article and Find Full Text PDF

Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.

View Article and Find Full Text PDF

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!