Cobaltaelectro-Catalyzed Oxidative C-H/N-H Activation with 1,3-Diynes by Electro-Removable Hydrazides.

Org Lett

Institut für Organische und Biomolekulare Chemie , Georg-August-Universität, Tammannstraße 2 , 37077 Göttingen , Germany.

Published: August 2019

An efficient electro-oxidative C-H/N-H activation with 1,3-diynes has been achieved with a robust earth-abundant cobalt catalyst. The electrochemical C-H functionalization was accomplished with ample scope and remarkable functional group compatibility in a simple undivided cell. This protocol avoids the utilization of stoichiometric and cost-intensive chemical oxidants in C-H activation, thus forming hydrogen as the only byproduct.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.9b02463DOI Listing

Publication Analysis

Top Keywords

c-h/n-h activation
8
activation 13-diynes
8
cobaltaelectro-catalyzed oxidative
4
oxidative c-h/n-h
4
13-diynes electro-removable
4
electro-removable hydrazides
4
hydrazides efficient
4
efficient electro-oxidative
4
electro-oxidative c-h/n-h
4
13-diynes achieved
4

Similar Publications

Programmable Synthesis of Cationic Azaperylenes via Rh(III)-Catalyzed Multiple C-H/N-H Bonds Activation and Annulation.

Org Lett

December 2024

Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

Rh(III)-catalyzed dual N-H and triple C-H activation/(4 + 2) annulation of 2-aryl-2,3-dihydro-1-perimidines and alkynes has been disclosed to construct 4,5,14,15-tetrasubstituted cationic azaperylenes with high yields (up to 95%) and broad scope. Tandem (4 + 2) annulation of 1-perimidines with vinylene carbonate and alkynes affords 4,5-disubstituted azaperylene salts, and -alkynyl 1-perimidines undergo an intra- and intermolecular annulation cascade to give 4,5,14-trisubstituted targets. Most of the intermediates were detected by ESI-MS, indicating a convincible mechanism including three possible paths.

View Article and Find Full Text PDF

Background And Purpose: Antimicrobial resistance (AMR) has emerged as a significant global concern. To combat this growing threat, various strategies have been employed, including the use of plant extracts and the biosynthesis of nanoparticles (NPs). The current study was designed to evaluate the phytochemical analysis of ginger () extracts, characterize the silver nanoparticles (AgNPs) and to see their antibacterial potentials against multi-drug resistant (MDR) bacterial strains.

View Article and Find Full Text PDF

We disclosed an efficient protocol for regioselective C6 C-H/N-H activation/annulation reaction of indole-7-carboxamides with alkynes to synthesize highly substituted pyrrolo[3,2-h]isoquinolin-9-one derivatives. Under optimized reaction conditions, electron-deficient and electron-rich internal alkynes reacted efficiently with various indole-7-carboxamides to deliver desired products in good to excellent yields. The synthetic utility of the product is demonstrated by its selective oxidation to the corresponding isatin derivative.

View Article and Find Full Text PDF

Isoindolinones are vital heterocyclic compounds in medicinal chemistry, notable for their diverse bioactivities. Significant attention has been devoted to their preparation; however, existing methods are unsuitable for constructing unsubstituted 3-methyleneisoindolin-1-ones. Herein, we present a rhodium(III)-catalyzed method for synthesizing unsubstituted 3-methyleneisoindolin-1-ones via C-H/N-H activation and annulation of N-methoxybenzamides with potassium (ethenyl)trifluoroborate.

View Article and Find Full Text PDF

Selenium (Se), as a vital stress ameliorant, possesses a beneficial effect on mediating detrimental effects of environmental threats. However, the mechanisms of Se in mitigating the deleterious effects of drought are still poorly understood. Gentiana macrophylla Pall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!